原文地址:http://www.cnblogs.com/GXZlegend/p/6826475.html


题目描述

In the Byteotian Line Forest there are   trees in a row. On top of the first one, there is a little bird who would like to fly over to the top of the last tree. Being in fact very little, the bird might lack the strength to fly there without any stop. If the bird is sitting on top of the tree no.  , then in a single flight leg it can fly to any of the trees no.i+1,i+2…I+K, and then has to rest afterward.
Moreover, flying up is far harder to flying down. A flight leg is tiresome if it ends in a tree at least as high as the one where is started. Otherwise the flight leg is not tiresome.
The goal is to select the trees on which the little bird will land so that the overall flight is least tiresome, i.e., it has the minimum number of tiresome legs. We note that birds are social creatures, and our bird has a few bird-friends who would also like to get from the first tree to the last one. The stamina of all the birds varies, so the bird's friends may have different values of the parameter  . Help all the birds, little and big!
有一排n棵树,第i棵树的高度是Di。
MHY要从第一棵树到第n棵树去找他的妹子玩。
如果MHY在第i棵树,那么他可以跳到第i+1,i+2,...,i+k棵树。
如果MHY跳到一棵不矮于当前树的树,那么他的劳累值会+1,否则不会。
为了有体力和妹子玩,MHY要最小化劳累值。

输入

There is a single integer N(2<=N<=1 000 000) in the first line of the standard input: the number of trees in the Byteotian Line Forest. The second line of input holds   integers D1,D2…Dn(1<=Di<=10^9) separated by single spaces: Di is the height of the i-th tree.
The third line of the input holds a single integer Q(1<=Q<=25): the number of birds whose flights need to be planned. The following Q lines describe these birds: in the i-th of these lines, there is an integer Ki(1<=Ki<=N-1) specifying the i-th bird's stamina. In other words, the maximum number of trees that the i-th bird can pass before it has to rest is Ki-1.

输出

Your program should print exactly Q lines to the standard output. In the I-th line, it should specify the minimum number of tiresome flight legs of the i-th bird.

样例输入

9
4 6 3 6 3 7 2 6 5
2
2
5

样例输出

2
1


题解

单调队列优化dp

设f[i]表示跳到i的最小劳累值,那么有f[i]=f[j]+(height[i]>=height[j])

由于f[i]-f[j]最大为1,所以从f[k]=f[j]+x转移过来一定不是最优,即f小的更优。

同时应尽量让height[j]大,所以当f相同时,height更大的更优。

据此我们可以维护一个单调队列,其中f单调递增,f相同时height单调递减。

然后判断边界更新f并加入到队列中即可。

#include <cstdio>
int a[1000010] , q[1000010] , f[1000010];
bool cmp(int x , int y)
{
return f[x] == f[y] ? a[x] > a[y] : f[x] < f[y];
}
int main()
{
int n , i , m , k , l , r;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]);
scanf("%d" , &m);
while(m -- )
{
scanf("%d" , &k);
l = r = q[1] = 1;
for(i = 2 ; i <= n ; i ++ )
{
while(l <= r && q[l] < i - k) l ++ ;
f[i] = f[q[l]] + (a[q[l]] <= a[i]);
while(l <= r && cmp(i , q[r])) r -- ;
q[++r] = i;
}
printf("%d\n" , f[n]);
}
return 0;
}

【bzoj3831】[Poi2014]Little Bird 单调队列优化dp的更多相关文章

  1. bzoj3831 [Poi2014]Little Bird 单调队列优化dp

    3831: [Poi2014]Little Bird Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 505  Solved: 322[Submit][ ...

  2. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  3. 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)

    洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...

  4. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  5. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  6. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  7. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  8. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  9. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

随机推荐

  1. mpvue项目中安装weui

    观察一下发现,mpvue项目打包css的规律是:根组件App.vue里的style样式全部打包到 dist  /  static / css / app.wxss ..   参照微信小程序的原生引入使 ...

  2. Java分享笔记:泛型机制的程序演示

    package packA; import java.util.*; public class GenericDemo { public static void main(String[] args) ...

  3. centos 7 ifconfig 命令找不到

    最近在配置linux 环境: 在官网看到centOS除了最新版本7,那就尝试一下吧.最小安装centOS 7之后发现没有ifconfig命令,在网上找了一下都说是路径的路问题. 我用echo $PAT ...

  4. IDEA的下载安装和激活

    1.下载网站http://www.jetbrains.com/ 2. 3. 4.注意要下载Ultimate版本 5.安装 下载完成后直接下一步,傻瓜式安装 6.激活,在图片位置输入激活码即可 !!!! ...

  5. linux学习笔记二:三种网络配置

    本文引用自:https://www.linuxidc.com/Linux/2017-05/144370.htm [linux公社] VMware为我们提供了三种网络工作模式,它们分别是:Bridged ...

  6. 基本数据类型补充,set集合,深浅拷贝等

    1.join:将字符串,列表,用指定的字符连接,也可以用空去连接,这样就可以把列表变成str ll = ["wang","jian","wei&quo ...

  7. Gson转Map时,Int会变成double解决方法

    package com.cdy.demo; import java.lang.reflect.Type; import java.util.HashMap; import java.util.Map; ...

  8. 学习python第十二天,函数4 生成器generator和迭代器Iterator

    在Python中,这种一边循环一边计算的机制,称为生成器:generator 要创建一个generator,有很多种方法.第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个genera ...

  9. C++基础 C++对类的管理——封装

    1.封装 两层含义: (1)把事物的属性和方法结合成个整体. (2)对类的属性和方法进行访问控制,对不信的进行信息屏蔽. 2.访问控制 控制分为 类的内部,类的外部. public 修饰的成员,可在内 ...

  10. CF961E Tufurama 树状数组

    E. Tufurama One day Polycarp decided to rewatch his absolute favourite episode of well-known TV seri ...