题意

ftiasch 有 N 个物品, 体积分别是 W1W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Sol

Orz hzwer

这题可能有三种做法吧。。

第一种是分治背包

第二种是NTT优化暴力

第三种是$O(nm)$的神仙dp

这里只说一下第三种

首先设$f[i][j]$表示前$i$个物品选了$j$个,然后就是裸的完全背包

设$cnt[i][x]$表示答案

考虑这玩意儿怎么转移

  1. $cnt[i][0] = 1$
  2. 若$j \le w[i]$,$cnt[i][j] = f[n][j]$
  3. 若$j \geqslant w[i]$,$cnt[i][j] = f[n][j] - cnt[i][j - w[i]]$

第三个的转移非常神仙,反正我是没想出来,我们考虑用总的方案数减去用了改物品的方案数,我们发现直接算不是很好算,然后补集转化一下,用了物品$i$,体积为$j$,那么其他物品的体积为$j - w[i]$,这里的其他物品,也就是不用$i$的情况,也就是原来的$cnt$数组!!好神仙啊qwq

#include<cstdio>
#include<algorithm>
#include<stack>
#include<queue>
#include<cmath>
//#define int long long
#define Pair pair<int, int>
#define fi first
#define se second
#define MP(x, y) make_pair(x, y)
using namespace std;
const int MAXN = 1e6 + , mod = ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, M;
int w[MAXN], f[][], cnt[][];
main() {
N = read(); M = read();
for(int i = ; i <= N; i++) w[i] = read();
f[][] = ;
for(int i = ; i <= N; i++) {
for(int j = ; j <= M; j++) {
(f[i][j] += f[i - ][j]) %= mod;//不装
if(j >= w[i]) (f[i][j] += f[i - ][j - w[i]]) %= mod;
}
}
for(int i = ; i <= N; i++) {
cnt[i][] = ;
for(int j = ; j <= M; j++) {
if(j < w[i]) cnt[i][j] = f[N][j] % mod;
else cnt[i][j] = (f[N][j] - cnt[i][j - w[i]] + mod) % mod;
}
}
for(int i = ; i <= N; i++, puts(""))
for(int j = ; j <= M; j++)
printf("%d", cnt[i][j] % mod);
return ;
}
/*
3 2
1 1 2
*/

BZOJ2287: 【POJ Challenge】消失之物(背包dp)的更多相关文章

  1. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  2. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  3. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  4. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  5. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  6. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  7. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  8. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  9. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

随机推荐

  1. Vue-multiselect详解(Vue.js选择框解决方案)

    github地址:https://github.com/shentao/vue-multiselect 官网链接:https://vue-multiselect.js.org/#sub-getting ...

  2. C++11随机数发生器

    前言 一直知道所谓的"随机数"都是伪随机,事实上也是满足某种规则生成的.有些程序测试时通常需要一个随机数源,但在新标准出现之前,C++都是依赖简单的C库函数rand来生成随机数的. ...

  3. 匿名内部类(new类时覆盖类中方法)

    public class Person { private String name ; protected String getName() { return name; } public void ...

  4. 弹层组件文档 - layui.layer

    http://www.layui.com/doc/modules/layer.html

  5. 在SpringBoot中使用Docker(利用dockerfile-maven-plugin插件)

    周末在家做了一个实验: 将Docker通过插件的方式集成到SpringBoot中 然后通过Maven命令根据项目中的Dockerfile自动生成Docker镜像,同时将镜像推送到远程Linux服务器( ...

  6. java Bean的映射工具

    数据层,业务逻辑层和表现层,每一层对应的应该是不一样的对象,所以就有个这么个java bean的映射工具 dozer.......................................... ...

  7. Sqoop概述

    sqoop Sqoop 是传统数据库与 Hadoop 之间数据同步的工具,它是 Hadoop 发展到一定程度的必然产物,它主要解决的是传统数据库和Hadoop之间数据的迁移问题.这节课我们将详细介绍 ...

  8. mysql 位操作支持

    mysql 支持位操作. & 位与 | 位或 例如:update car_ins_fee_entity set change_status=(change_status | 1) where ...

  9. C# 读写XML文件的方法

    C# 读写XML文件的方法 一.写XML文件 XmlDocument xmlDocument = new XmlDocument();xmlDocument.AppendChild(xmlDocume ...

  10. Hibernate的事务管理

    Hibernate的事务管理 事务(Transaction)是工作中的基本逻辑单位,可以用于确保数据库能够被正确修改,避免数据只修改了一部分而导致数据不完整,或者在修改时受到用户干扰.作为一名软件设计 ...