题目描述

A group of cows grabbed a truck and ventured on an expedition deep into the jungle. Being rather poor drivers, the cows unfortunately managed to run over a rock and puncture the truck's fuel tank. The truck now leaks one unit of fuel every unit of distance it travels.

To repair the truck, the cows need to drive to the nearest town (no more than 1,000,000 units distant) down a long, winding road. On this road, between the town and the current location of the truck, there are N (1 <= N <= 10,000) fuel stops where the cows can stop to acquire additional fuel (1..100 units at each stop).

The jungle is a dangerous place for humans and is especially dangerous for cows. Therefore, the cows want to make the minimum possible number of stops for fuel on the way to the town. Fortunately, the capacity of the fuel tank on their truck is so large that there is effectively no limit to the amount of fuel it can hold. The truck is currently L units away from the town and has P units of fuel (1 <= P <= 1,000,000).

Determine the minimum number of stops needed to reach the town, or if the cows cannot reach the town at all.

输入输出格式

输入格式:

The first line of the input contains an integer t representing
the number of test cases. Then t test cases follow. Each test case has
the follwing form:

  • Line 1: A single integer, N
  • Lines 2..N+1: Each line contains two space-separated integers
    describing a fuel stop: The first integer is the distance from the town
    to the stop; the second is the amount of fuel available at that stop.
  • Line N+2: Two space-separated integers, L and P

输出格式:

For each test case, output a single integer giving the minimum
number of fuel stops necessary to reach the town. If it is not possible
to reach the town, output -1.

输入输出样例

输入样例#1: 复制

1
4
4 4
5 2
11 5
15 10
25 10
输出样例#1: 复制

2

Input details
The truck is 25 units away from the town; the truck has 10 units
of fuel. Along the road, there are 4 fuel stops at distances 4,
5, 11, and 15 from the town (so these are initially at distances
21, 20, 14, and 10 from the truck). These fuel stops can supply
up to 4, 2, 5, and 10 units of fuel, respectively. Output details:
Drive 10 units, stop to acquire 10 more units of fuel, drive 4 more
units, stop to acquire 5 more units of fuel, then drive to the town. Priority_queue即可解决;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#pragma GCC optimize(2)
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 100005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} struct node {
int dis, sum;
}stp[maxn]; bool cmp(node a, node b) {
return a.dis < b.dis;
} int T;
int l, p;
int main()
{
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
ms(stp); int n; rdint(n);priority_queue<int>q;
for (int i = 0; i < n; i++)rdint(stp[i].dis), rdint(stp[i].sum);
rdint(l); rdint(p);
for (int i = 0; i < n; i++)stp[i].dis = l - stp[i].dis;
stp[n].dis = l; stp[n].sum = 0;
n++;
sort(stp, stp + n, cmp);
int cnt = p, loct = 0;// 油量为cnt,距出发点距离为loct
bool fg = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
int Dis = stp[i].dis - loct;
while (Dis > cnt) {
if (q.empty()) {
fg = 1; break;
}
else {
int tmp = q.top(); q.pop();
cnt += tmp; ans++;
}
}
if (fg)break;
cnt -= Dis;
q.push(stp[i].sum);
loct = stp[i].dis;
}
if (fg)cout << -1 << endl;
else cout << ans << endl;
}
return 0;
}

EXPEDI - Expedition 优先队列的更多相关文章

  1. poj 3431 Expedition 优先队列

    poj 3431 Expedition 优先队列 题目链接: http://poj.org/problem?id=2431 思路: 优先队列.对于一段能够达到的距离,优先选择其中能够加油最多的站点,这 ...

  2. H - Expedition 优先队列 贪心

    来源poj2431 A group of cows grabbed a truck and ventured on an expedition deep into the jungle. Being ...

  3. poj2431 Expedition优先队列

    Description A group of cows grabbed a truck and ventured on an expedition deep into the jungle. Bein ...

  4. SP348 EXPEDI - Expedition

    嘟嘟嘟 水贪心. 当经过一个加油站的时候,记下这个加油站能加的油,然后没油的时候从经过的加油站中选择加油最多的加. #include<cstdio> #include<iostrea ...

  5. 题解 P1016 旅行家的预算

    题目传送门(以纪念调了两个半小时的单调队列) emmm这题单调队列可海星... 因为每个点有油量无限的,但是油箱容量是无限的(正好反的一道题 SP348 EXPEDI - Expedition) 所以 ...

  6. POJ 2431 Expedition (优先队列+贪心)

    题目链接 Description A group of cows grabbed a truck and ventured on an expedition deep into the jungle. ...

  7. 【POJ - 2431】Expedition(优先队列)

    Expedition 直接中文 Descriptions 一群奶牛抓起一辆卡车,冒险进入丛林深处的探险队.作为相当差的司机,不幸的是,奶牛设法跑过一块岩石并刺破卡车的油箱.卡车现在每运行一个单位的距离 ...

  8. poj 2431 Expedition 贪心+优先队列 很好很好的一道题!!!

    Expedition Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10025   Accepted: 2918 Descr ...

  9. POJ 2431 Expedition(优先队列、贪心)

    题目链接: 传送门 Expedition Time Limit: 1000MS     Memory Limit: 65536K 题目描述 驾驶一辆卡车行驶L单位距离.最开始有P单位的汽油.卡车每开1 ...

随机推荐

  1. 关于WinPE安装操作系统

    在WinPE安装操作系统,最好用虚拟光驱打开安装镜像文件,或者把镜像文件解压后直接安装. 最好不要用工具盘里所带的一键安装,复制等等功能,因为这些功能往往会安装一些其他的附带功能,不是清洁版的.

  2. [更新中]【South使用总结】django开发中使用South进行数据库迁移

    Django开发中使用South进行数据库迁移的使用总结 South的详细资料可产看官方文档http://south.readthedocs.org/en/latest South安装配置 pip i ...

  3. 第十三章 Spring框架的设计理念与设计模式分析(待续)

    Spring的骨骼架构 核心组件详解 Spring中AOP的特性详解 设计模式解析之代理模式 设计模式解析之策略模式

  4. DDD学习笔录——领域驱动设计DDD概念总结

  5. javascript删除option选项的多种方法总结

    转自:https://blog.csdn.net/xiaoxuanyunmeng/article/details/16886505 1. JavaScript 代码如下: var oSel=docum ...

  6. 工作的时候用到spring返回xml view查到此文章亲测可用

    spring mvc就是好,特别是rest风格的话,一个 org.springframework.web.servlet.view.ContentNegotiatingViewResolver就可以根 ...

  7. tomcat是一个应用服务器

    总的来说,tomcat的身份可以看作一个WEB容器,但实际上是一个应用程序服务器.为什么这么说?1.因为你从tomcat内部看你会发现其实tomcat内置了一个轻量级的WEB服务器,用于转发html文 ...

  8. [luogu3385]dfs_spfa判负环模板

    解题关键:模板保存. 判负环不需要memset dis数组,因为已经更新过得d数组一定小于0,如果当前点可以更新d,说明d更小,有可能继续扩大负环,所以继续更新:如果比d[v]大,则不可能继续更新负环 ...

  9. [poj3159]Candies(差分约束+链式前向星dijkstra模板)

    题意:n个人,m个信息,每行的信息是3个数字,A,B,C,表示B比A多出来的糖果不超过C个,问你,n号人最多比1号人多几个糖果 解题关键:差分约束系统转化为最短路,B-A>=C,建有向边即可,与 ...

  10. 【总结整理】json数据请求简化版理解(祺哥的成果)

    在同源js目录下新建.txt文件 { "news":[ {"title":"审计管理","time":"201 ...