P3172 [CQOI2015]选数(莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P3172
[题解] https://www.luogu.org/blog/user29936/solution-p3172
1.推式子里面最重要的一个套路:枚举\(di,\)忽略倍数系数的影响.在这道题里面应用于只考虑k的倍数才是有用的.
2.考虑容斥做法,即\(f[i]\)表示答案是\(i\)的倍数的方案数.
3.为避免讨论边界情况,不考虑全选同一个数的情况,即设\(f[i]=x^{n}-x,\)最后再考虑能否全选k的情况.
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
int res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
return bo ? ~res + 1 : res;
}
const int N = 1e5 + 5, PYZ = 1e9 + 7;
int n, K, L, H, f[N];
int qpow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = 1ll * res * a % PYZ;
a = 1ll * a * a % PYZ;
b >>= 1;
}
return res;
}
int main() {
int i, j; n = read(); K = read(); L = read(); H = read();
if (L % K) L = L / K + 1; else L /= K; H /= K;
if (L > H) return puts("0"), 0;
for (i = 1; i <= H - L; i++) {
int l = L, r = H;
if (l % i) l = l / i + 1; else l /= i; r /= i;
if (l > r) continue;
f[i] = (qpow(r - l + 1, n) - (r - l + 1) + PYZ) % PYZ;
}
for (i = H - L; i; i--) for (j = (i << 1); j <= H - L; j += i)
f[i] = (f[i] - f[j] + PYZ) % PYZ;
if (L == 1) (f[1] += 1) %= PYZ; cout << f[1] << endl;
return 0;
}
P3172 [CQOI2015]选数(莫比乌斯反演)的更多相关文章
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛
link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- [bzoj3930] [洛谷P3172] [CQOI2015] 选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 洛谷P3172 [CQOI2015]选数(容斥)
传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...
随机推荐
- C语言学习笔记--指针阅读技巧
1. 指针阅读技巧:右左法则 (1)从最里层的圆括号中未定义的标示符看起 (2)首先往右看,再往左看 (3)遇到圆括号或方括号时可以确定部分类型,并调转方向 (4)重复 2.3 步骤,直到阅读结束 注 ...
- Spring事务SPI及配置介绍
Spring事务SPI及配置介绍 标签: spring事务aop数据管理 2015-05-17 11:42 606人阅读 评论(0) 收藏 举报 分类: Spring(12) 版权声明:本文为 ...
- hadoop再次集群搭建(2)-配置免秘钥ssh登录
SSH对于大多程序员都不陌生,目前主流的云服务提供上也是通过SSH来提供链接的安全保障,比如AWS通过使用下载的私钥(private key)实现与EC2实例安全连接.GitHub通过上传的公钥(pu ...
- PHP如何将XML转成数组
如果你使用 curl 获取的 xml data $xml = simplexml_load_string($data); $data['tk'] = json_decode(json_encode($ ...
- C++实现矩阵的相加/相称/转置/求鞍点
1.矩阵相加 两个同型矩阵做加法,就是对应的元素相加. #include<iostream> using namespace std; int main(){ int a[3][3]={{ ...
- 项目一:第八天 1、前台系统导入 实现客户注册 发验证码,邮件 springdata-redis存储数据 3、实现客户登陆
1 前台系统客户注册功能 页面:signup.html 1.1 验证手机号是否注册(邮箱同样) 1. 使用Jquery-validate插件进行相关校验,使用校验规则 <input type=& ...
- tarjan进阶
一.边双连通分量 定义 若一个无向图中的去掉任意一条边都不会改变此图的连通性,即不存在桥,则称作边双连通图.一个无向图中的每一个极大边双连通子图称作此无向图的边双连通分量. 实际求法和强连通分量差不多 ...
- git clone Timed out 解决
因为不可抗拒的原因,在乌鲁木齐从 github 上面克隆项目时,会超时克隆不了. 使用 https 方式报错: $ git clone https://github.com/xxx.git Cloni ...
- 关于Java中hashCode方法的实现源码
首先来看一下String中hashCode方法的实现源码. public int hashCode() { int h = hash; if (h == 0 && value.leng ...
- CSS相关知识和经验的碎片化记录
1.子DIV块中设置margin-top时影响父DIV块位置的问题 解决办法1:若子DIV块中使用margin-top,则在父DIV块中添加:overflow:hidden; 解决办法2:在子DIV块 ...