[题目链接] https://www.luogu.org/problemnew/show/P3172

[题解] https://www.luogu.org/blog/user29936/solution-p3172

1.推式子里面最重要的一个套路:枚举\(di,\)忽略倍数系数的影响.在这道题里面应用于只考虑k的倍数才是有用的.

2.考虑容斥做法,即\(f[i]\)表示答案是\(i\)的倍数的方案数.

3.为避免讨论边界情况,不考虑全选同一个数的情况,即设\(f[i]=x^{n}-x,\)最后再考虑能否全选k的情况.

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
int res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
return bo ? ~res + 1 : res;
}
const int N = 1e5 + 5, PYZ = 1e9 + 7;
int n, K, L, H, f[N];
int qpow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = 1ll * res * a % PYZ;
a = 1ll * a * a % PYZ;
b >>= 1;
}
return res;
}
int main() {
int i, j; n = read(); K = read(); L = read(); H = read();
if (L % K) L = L / K + 1; else L /= K; H /= K;
if (L > H) return puts("0"), 0;
for (i = 1; i <= H - L; i++) {
int l = L, r = H;
if (l % i) l = l / i + 1; else l /= i; r /= i;
if (l > r) continue;
f[i] = (qpow(r - l + 1, n) - (r - l + 1) + PYZ) % PYZ;
}
for (i = H - L; i; i--) for (j = (i << 1); j <= H - L; j += i)
f[i] = (f[i] - f[j] + PYZ) % PYZ;
if (L == 1) (f[1] += 1) %= PYZ; cout << f[1] << endl;
return 0;
}

P3172 [CQOI2015]选数(莫比乌斯反演)的更多相关文章

  1. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  2. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  3. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  4. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  5. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  6. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  7. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  8. [bzoj3930] [洛谷P3172] [CQOI2015] 选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  9. 洛谷P3172 [CQOI2015]选数(容斥)

    传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...

随机推荐

  1. 部署和调优 2.4 tomcat安装

    下载tamcet 官网 http://tomcat.apache.org/ 左侧选择版本 复制下载链接 切换到下载目录 cd /usr/local/src linux wget wget http:/ ...

  2. hibernate的子查询

    hibernate原话 HQL supports subqueries in the where clause. We can't think of many good uses for subque ...

  3. 获取百度搜索结果的真实url以及摘要和时间

    利用requests库和bs4实现,demo如下: #coding:utf- import requests from bs4 import BeautifulSoup import bs4 impo ...

  4. JavaWeb 没用

    Servlet的生命周期 初始化:Web容器加载servlet,调用innit(),只执行一次 处理业务: 请求到达时,运行service方法 并调用相应的doget或者dopost方法.  可执行多 ...

  5. vray学习笔记(5)-学习资料

    首先肯定是vray的官方的资料了: 一个是教程 https://docs.chaosgroup.com/display/VRAY3MAX/Tutorials 一个是帮助文件 https://docs. ...

  6. 51NOD 1616 最小集合

    传送门 分析 不难发现集合中的数一定是集合内其它一堆数的$gcd$ 于是我们枚举$i$,统计原来集合中有几个数是$i$的倍数,设这个值为$f(i)$ 之后对于每个$i$如果不存在$f(x*i) = f ...

  7. hadoop运行故障问题解决1——datanode节点启动后自动关闭

    ERROR org.apache.hadoop.hdfs.server.datanode.DataNode: java.io.IOException: Incompatible namespaceID ...

  8. Excel课程学习第二课单元格格式设置

    今天要讲的是单元格格式的设置,字体字号的设置,边框设置,合并单元格之类的. 下面看看具体的内容: 1.使用单元格格式工具美化表格 1.1设置单元格格式的对话框在哪里? 下图中三个小箭头都能打开设置单元 ...

  9. Web Api 测试工具

    1.调用POST方法:使用Chrome流量器的PostMan工具. 前端模拟发送数据/调试的好工具:Chrome下的Postman-REST Client 下载地址 https://chrome.go ...

  10. Blockade(Bzoj1123)

    Description Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 所有towns连通. Input 输入n&l ...