[题目链接] https://www.luogu.org/problemnew/show/P3172

[题解] https://www.luogu.org/blog/user29936/solution-p3172

1.推式子里面最重要的一个套路:枚举\(di,\)忽略倍数系数的影响.在这道题里面应用于只考虑k的倍数才是有用的.

2.考虑容斥做法,即\(f[i]\)表示答案是\(i\)的倍数的方案数.

3.为避免讨论边界情况,不考虑全选同一个数的情况,即设\(f[i]=x^{n}-x,\)最后再考虑能否全选k的情况.

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
int res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
return bo ? ~res + 1 : res;
}
const int N = 1e5 + 5, PYZ = 1e9 + 7;
int n, K, L, H, f[N];
int qpow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = 1ll * res * a % PYZ;
a = 1ll * a * a % PYZ;
b >>= 1;
}
return res;
}
int main() {
int i, j; n = read(); K = read(); L = read(); H = read();
if (L % K) L = L / K + 1; else L /= K; H /= K;
if (L > H) return puts("0"), 0;
for (i = 1; i <= H - L; i++) {
int l = L, r = H;
if (l % i) l = l / i + 1; else l /= i; r /= i;
if (l > r) continue;
f[i] = (qpow(r - l + 1, n) - (r - l + 1) + PYZ) % PYZ;
}
for (i = H - L; i; i--) for (j = (i << 1); j <= H - L; j += i)
f[i] = (f[i] - f[j] + PYZ) % PYZ;
if (L == 1) (f[1] += 1) %= PYZ; cout << f[1] << endl;
return 0;
}

P3172 [CQOI2015]选数(莫比乌斯反演)的更多相关文章

  1. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  2. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  3. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  4. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  5. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  6. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  7. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  8. [bzoj3930] [洛谷P3172] [CQOI2015] 选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  9. 洛谷P3172 [CQOI2015]选数(容斥)

    传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...

随机推荐

  1. 【WebRTC】简介

    WebRTC 名称源自网页实时通信(英语:Web Real-Time Communication)的缩写,是一个支持网页浏览器进行实时语音对话或视频对话的API.它于2011年6月1日开源并在Goog ...

  2. eclipse中。安装findbugs java检测工具

    问题提出: 当我们编写完代码,做完单元测试等各种测试后就提交正式运行,只能由运行的系统来检测我们代码是否有问题了,代码中隐藏的错误在系统运行的过程中被发现后,然后再来进行相应的修改,那么后期修改的代价 ...

  3. dos 下bat 常用符号

    1.@一般在它之后紧跟一条命令或一条语句,则此命令或语句本身在执行的时候不会显示在屏幕上.请把下面的代码保存为test.cmd文件,然后运行,比较一下两条echo语句在屏幕上的输出差异:    ech ...

  4. LINUX oracle dbca无法启动

    LINUX操作系统中执行DBCA无法启动 方法:执行以下命令后再执行DBCA xhost +

  5. PHP自定义函数获取汉字首字母的方法

    使用场景:城市列表等根据首字母排序的场景 function getFirstCharter($str) { if (empty($str)) { return ''; } $fchar = ord($ ...

  6. [Elasticsearch2.x] 多字段搜索 (三) - multi_match查询和多数字段 <译>

    multi_match查询 multi_match查询提供了一个简便的方法用来对多个字段执行相同的查询. NOTE 存在几种类型的multi_match查询,其中的3种正好和在“了解你的数据”一节中提 ...

  7. ROS Learning-029 (提高篇-007 A Mobile Base-05) 控制移动平台 --- (Python编程)控制虚拟机器人的移动(精确的制定目标位置)

    ROS 提高篇 之 A Mobile Base-05 - 控制移动平台 - (Python编程)控制虚拟机器人的移动(精确的制定目标位置) 使用 odometry 消息类型 重写 out_and_ba ...

  8. EZOJ #82

    传送门 分析 首先我们发现$k$位数实际就是一位的情况的$k$次方 考虑一开始的总方案数是$2^{nm}$ 我们每一次枚举其中有$i$行$j$列 对于这种情况的容斥系数为$(-1)^{i+j}$ 方案 ...

  9. Entity Framework Tutorial Basics(34):Table-Valued Function

    Table-Valued Function in Entity Framework 5.0 Entity Framework 5.0 supports Table-valued functions o ...

  10. 《Effective Java》第5章 泛型

    第23条:请不要在新代码中使用原生态类型 声明中具有一个或者多个类型参数( type parameter)的类或者接口,就是泛型(generic)类或者接口. 每种泛型定义一组参数化的类型(param ...