P3172 [CQOI2015]选数(莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P3172
[题解] https://www.luogu.org/blog/user29936/solution-p3172
1.推式子里面最重要的一个套路:枚举\(di,\)忽略倍数系数的影响.在这道题里面应用于只考虑k的倍数才是有用的.
2.考虑容斥做法,即\(f[i]\)表示答案是\(i\)的倍数的方案数.
3.为避免讨论边界情况,不考虑全选同一个数的情况,即设\(f[i]=x^{n}-x,\)最后再考虑能否全选k的情况.
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
int res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
return bo ? ~res + 1 : res;
}
const int N = 1e5 + 5, PYZ = 1e9 + 7;
int n, K, L, H, f[N];
int qpow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = 1ll * res * a % PYZ;
a = 1ll * a * a % PYZ;
b >>= 1;
}
return res;
}
int main() {
int i, j; n = read(); K = read(); L = read(); H = read();
if (L % K) L = L / K + 1; else L /= K; H /= K;
if (L > H) return puts("0"), 0;
for (i = 1; i <= H - L; i++) {
int l = L, r = H;
if (l % i) l = l / i + 1; else l /= i; r /= i;
if (l > r) continue;
f[i] = (qpow(r - l + 1, n) - (r - l + 1) + PYZ) % PYZ;
}
for (i = H - L; i; i--) for (j = (i << 1); j <= H - L; j += i)
f[i] = (f[i] - f[j] + PYZ) % PYZ;
if (L == 1) (f[1] += 1) %= PYZ; cout << f[1] << endl;
return 0;
}
P3172 [CQOI2015]选数(莫比乌斯反演)的更多相关文章
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛
link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- [bzoj3930] [洛谷P3172] [CQOI2015] 选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 洛谷P3172 [CQOI2015]选数(容斥)
传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...
随机推荐
- opencv 美白磨皮人脸检测<转>
1. 简介 这学期的计算机视觉课,我们组的课程项目为“照片自动美化”,其中我负责的模块为人脸检测与自动磨皮.功能为:用户上传一张照片,自动检测并定位出照片中的人脸,将照片中所有的人脸进行“磨皮”处理, ...
- cocos2d-js 浏览器与JSB内存管理机制的不同
写这边文章的主要目的是为了理解使用cocos3d-js开发app时,浏览器调试与真机情况不一致的原因 一.浏览器中内存管理机制 HTML5版本运行时,整个游戏只存在JS脚本与一些必要的资源文件,这时候 ...
- PythonNote03_HTML标签
<!DOCTYPE> <html> <head> <meta charset = "utf-8" /> <meta name= ...
- google浏览器:Ignored call to 'confirm()'. The document is sandboxed, and the 'allow-modals' keyword is not set
最近做一个功能,测试环境测试没问题,google浏览器测试也没问题,结果上生产发现google浏览器竟然用不了.查看控制台发现控制台报错: Ignored call to 'confirm()'. T ...
- idea 修改Recent projects
idea用了一段时间了,打开的项目多了,导致Open Recent列表中的项目也非常多,在找一个项目时很不方便. 后来查询,在~/Library/Preferences/IntelliJIdea目录/ ...
- OpenGL超级宝典完整源码(第五版)
链接:https://pan.baidu.com/s/1dGQkk4T 密码:wu44 Visual Studio 2017配置OpenGL https://blog.csdn.net/qiangbi ...
- [转]JQuery 如何选择带有多个class的元素
比如下面代码需要选择同时带有这几个class的元素,怎么写? 1 <div class="modal fade in"></div> A: 1. 依次过滤 ...
- 101334E Exploring Pyramids
传送门 题目大意 看样例,懂题意 分析 实际就是个区间dp,我开始居然不会...详见代码(代码用的记忆化搜索) 代码 #include<iostream> #include<cstd ...
- kafka的producer执行卡住的问题
使用windows开发producer然后向远程的kakfa集群发送数据,但是一直卡着, 在window的hosts文件添加kafka集群的主机名和ip的映射就好了 网上搜了下,大致是producer ...
- C和C++中文件读写的区别
C中采用的主要是文件指针的办法,C++中对文件的操作主要运用了“文件流”(即非标准的输入输出)的思想 eg1": #include<stdio.h> //... FILE* fp ...