Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT
首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走;
然后就是如何处理不能走的点:把点sort一遍,按横纵坐标降序排列,这样前面的点可能会包含后面的点,所以算方案数时时要考虑。
算出来从$(0,0)$到$橙色的点(x,y)$的方案数为$C_{x+y}^x$,再减去蓝色点*蓝色点到橙色点方案数,才是到橙色点的方案数;
注意每条非法路径只会被第一个经过他的非法的点记录。
在最后把每个店的方案数再乘上到终点的代价,就是在模其中一个数意义下的解;
最最后用中国剩余定理合并。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define ll long long
#define R register ll
using namespace std;
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
struct node {int x,y;
bool operator <(const node& b) const{return x==b.x?y<b.y:x<b.x;}
} a[];
ll f[],p[],ans[],M[],T[];
ll fac[],inv[];
inline ll C(ll n,ll m,ll p) {
if(n<m) return ; return fac[n]*inv[fac[m]*fac[n-m]%p]%p;
}
inline ll L(ll n,ll m,ll p) {
if(n<m) return ; if(!n) return ;
return L(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
ll n,m,t,mod,tot,S=;
signed main() {
n=g(),m=g(),t=g(),mod=g();
if(mod==) p[++tot]=mod;
else p[]=,p[]=,p[]=,p[]=,tot=;
for(R i=;i<=t;++i) a[i].x=g(),a[i].y=g();
sort(a+,a+t+); for(R i=;i<=tot;++i) S*=p[i];
for(R i=;i<=tot;++i) M[i]=S/p[i]; inv[]=,fac[]=;
for(R k=;k<=tot;++k) {
R P=p[k]; for(R i=;i<P;++i) inv[i]=(P-P/i*inv[P%i]%P)%P;
T[k]=inv[M[k]%P]; for(R i=;i<P;++i) fac[i]=fac[i-]*i%P;
ans[k]=L(n+m,n,P); for(R i=;i<=t;++i) {
f[i]=L(a[i].x+a[i].y,a[i].x,P);
for(R j=;j<i;++j) if(a[j].x<=a[i].x&&a[j].y<=a[i].y)
f[i]+=(P-f[j]*L(a[i].x+a[i].y-a[j].x-a[j].y,a[i].x-a[j].x,P)%P)%P;
f[i]%=P; ans[k]+=P-L(n+m-a[i].x-a[i].y,n-a[i].x,P)*f[i]%P;
} ans[k]%=P;
} ll anss=; for(R i=;i<=tot;++i) anss+=ans[i]*M[i]%mod*T[i]%mod;
printf("%lld\n",anss%mod);
}
2019.05.18
Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT的更多相关文章
- 洛谷 P4478 [BJWC2018]上学路线
洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因 ...
- P4478 [BJWC2018]上学路线
Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...
- BJWC2018上学路线
题目描述 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B 喜欢走最短的 ...
- bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp
LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...
- [luogu4478 BJWC2018] 上学路线 (容斥原理+拓展lucas)
传送门 Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路 ...
- [BJWC2018]上学路线
Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...
- bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...
- Luogu P2480 [SDOI2010]古代猪文 卢卡斯+组合+CRT
好吧刚开始以为扩展卢卡斯然后就往上套..结果奇奇怪怪又WA又T...后来才意识到它的因子都是质数...qwq怕不是这就是学知识学傻了.. 题意:$ G^{\Sigma_{d|n} \space C_n ...
- Luogu [P1958] 上学路线_NOI导刊2009普及(6)
上学路线_NOI导刊2009普及(6) 题目详见:上学路线_NOI导刊2009普及(6) 这是一道基础的DFS(深搜)题,堪称模板,是新手练习搜索与回溯的好题选. 大致思路:从(1,1)开始搜索,每次 ...
随机推荐
- SPOJ705 Distinct Substrings (后缀自动机&后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- bzoj 2342: 双倍回文 回文自动机
题目大意: 定义双倍回文串的左一半和右一半均是回文串的长度为4的倍数的回文串 求一个给定字符串中最长的双倍回文串的长度 题解: 我们知道可以简单地判定以某一点结尾的最长回文串 我们知道可以简单地判定以 ...
- 在Debug中使用断点调试程序
我最近在学习汇编的程序,所以很多都需要动手写点代码去测试,如果是测试三五行代码的还比较简单,可以在debug中直接按T进行单步调试,但是到后来调试的代码越来越复杂,越来越长,如果再使用单步调试不知道要 ...
- 【转】 Pro Android学习笔记(七一):HTTP服务(5):多线程调用HttpClient
目录(?)[-] 应用共享HttpClient对象的同步问题 创建共享HttpClient代码 创建共享对象 创建可共享的HttpClient对象 使用共享HttpClient对象的代码 基础代码 修 ...
- SpringBoot系列(1)
简介:用来简化新Spring应用的初始搭建以及开发过程:该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置. 特点:1. 创建独立的Spring应用程序2. 嵌入的Tomcat, ...
- stm32之UCOS-III
一.UCOS-III 学习UCOS-III,一般会学习以下内容: 任务创建.删除.挂起.恢复等: 临界区:独占CPU,尽量少用,否则会降低效率: 时间管理:时钟节拍(基于硬件定时器).软件定时器: 互 ...
- asp弹出层
asp弹出层 <style type="text/css"> html, body { height: %; width: %; } .white_content { ...
- 加减 script函数初识
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- SharePoint 2013上传AI格式文件,再次下载后变成了PS格式文件
问题: SharePoint 2013上传AI格式文件,再次下载后变成了PS格式文件 需要下载副本才能显示AI格式 解决办法有两个: 第一种,在客户端机器1. Click Start, click R ...
- PCLVisualizer可视化类(1)
PCLVisualizer可视化类是PCL中功能最全的可视化类,与CloudViewer可视化类相比,PCLVisualizer使用起来更为复杂,但该类具有更全面的功能,如显示法线.绘制多种形状和多个 ...