【洛谷P1962】斐波那契数列
斐波那契数列
题目链接:https://www.luogu.org/problemnew/show/P1962
矩阵A
1,1
1,0
用A^k即可求出feb(k)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long n=,k;
const long long MOD=;
struct Matrix{
long long m[][];
};
Matrix A,E,K; Matrix cheng(Matrix X,Matrix Y)
{
Matrix C;
for(long long i=;i<=n;i++)
for(long long j=;j<=n;j++)
{
C.m[i][j]=;
for(long long l=;l<=n;l++)
C.m[i][j]=(C.m[i][j]+(X.m[i][l]*Y.m[l][j]))%MOD;
}
return C;
}
Matrix qsort(Matrix X,long long p)
{
Matrix S=E;
while(p)
{
if(p&) S=cheng(S,X);
X=cheng(X,X);
p>>=;
}
return S;
}
int main()
{
scanf("%lld",&k);
E.m[][]=;
E.m[][]=;
A.m[][]=;
A.m[][]=;
A.m[][]=;
K=qsort(A,k);
printf("%lld\n",K.m[][]);
return ;
}
【洛谷P1962】斐波那契数列的更多相关文章
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 洛谷 P1962 斐波那契数列
题目链接:https://www.luogu.org/problemnew/show/P1962 题目大意: 略 分析: 由于数据规模很大,需要用矩阵快速幂来解. 代码如下: #pragma GCC ...
- 题解——洛谷P1962 斐波那契数列(矩阵乘法)
矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...
- 洛谷P1962 斐波那契数列
传送门 不难得到状态转移矩阵 然后带进去乱搞 //minamoto #include<iostream> #include<cstdio> #include<cstrin ...
随机推荐
- 常见的几种web攻击方式
一.Dos攻击(Denial of Service attack) 是一种针对服务器的能够让服务器呈现静止状态的攻击方式.有时候也加服务停止攻击或拒绝服务攻击.其原理就是发送大量的合法请求到服务器,服 ...
- 2019.03.20 读书笔记 as is 以及重写隐式/显示
强转.as is 的用法 强制转换类型有两种:子类转基类,重写隐式(implicit )\显示(explicit) 转换操作符 class myclass { private int value; p ...
- 3d Max 2017安装失败怎样卸载3dsmax?错误提示某些产品无法安装
AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...
- PyCharm5 破解汉化
作者博文地址:https://www.cnblogs.com/liu-shuai/ 破解: 将下列序列号复制到软件激活界面即可破解. 43B4A73YYJ-eyJsaWNlbnNlSWQiOiI0M0 ...
- 使用codedom自动生成代码
刚刚接触自动代码生成,便小试牛刀,解决了项目中的一些问题. 问题:我们的项目分成很多层次,当增加一个方法的时候,会显得异常繁琐,但每个层次之间的调用大同小异,所以尝试使用代码生成.现在假设有Engin ...
- pacman usage
pacman使用 安装了系统时候, 应该立马使用pacman-mirrors -c China更新源, 再使用pacman -Syyn更新系统 编辑/etc/pacman.conf添加 [archli ...
- linux 下库的深入调研
linux操作系统中,linux库文件路径还是比较常用的,于是我研究了一下linux库文件路径,在这里拿出来和大家分享一下,希望对大家有用. 库文件在连接(静态库和共享库)和运行(仅限于使用共享库的程 ...
- CentOS7安装Nginx实现API网关
参考 http://nginx.org/ http://nginx.org/en/linux_packages.html#stable https://www.npmjs.com/package/js ...
- Unity C# ref与out
ref和out 都是按地址传递的,使用后都将改变原来的数值.ref 方法参数关键字使方法引用传递到方法的同一个变量.当控制传递回调用方法时,在方法中对参数所做的任何更改都将反映在该变量中.若要使用 r ...
- Hibernate课程 初探多对多映射2-4 测试
package com.ddwei.test; import org.hibernate.Session; import org.hibernate.Transaction; import com.d ...