【BZOJ2460】[BeiJing2011]元素 贪心+高斯消元求线性基
【BZOJ2460】[BeiJing2011]元素
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。 后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。 并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。 对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4
题解:想都没想就贪心了一发,居然真的是对的~
直接先将所有矿石按照魔力值排序,然后再求线性基就好了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
struct mine
{
ll num;
int val;
}s[1010];
int n,ans;
int vis[1010];
bool cmp(mine a,mine b)
{
return a.val>b.val;
}
void gauss()
{
ll i;
int j,k;
for(i=1ll<<60;i;i>>=1)
{
for(k=0,j=1;j<=n;j++) if(!vis[j]&&(s[j].num&i))
{
k=j,ans+=s[j].val,vis[k]=1;
break;
}
if(!k) continue;
for(j=1;j<=n;j++) if(j!=k&&(s[j].num&i)) s[j].num^=s[k].num;
}
}
int main()
{
scanf("%d",&n);
int i,j;
for(i=1;i<=n;i++) scanf("%lld%d",&s[i].num,&s[i].val);
sort(s+1,s+n+1,cmp);
gauss();
printf("%d",ans);
return 0;
}
【BZOJ2460】[BeiJing2011]元素 贪心+高斯消元求线性基的更多相关文章
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
- 【BZOJ2322】[BeiJing2011]梦想封印 高斯消元求线性基+DFS+set
[BZOJ2322][BeiJing2011]梦想封印 Description 渐渐地,Magic Land上的人们对那座岛屿上的各种现象有了深入的了解. 为了分析一种奇特的称为梦想封印(Fantas ...
- 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基
题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...
- 【bzoj4269】再见Xor 高斯消元求线性基
题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...
- HDU3949/AcWing210 XOR (高斯消元求线性基)
求第k小的异或和,用高斯消元求更简单一些. 1 //用高斯消元求线性基 2 #include<bits/stdc++.h> 3 using namespace std; 4 #define ...
- 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基
题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...
- 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS
[BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...
- 【BZOJ2844】albus就是要第一个出场 高斯消元求线性基
[BZOJ2844]albus就是要第一个出场 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2 ...
- BZOJ 4269 高斯消元求线性基
思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorith ...
随机推荐
- Android.mk入门(一)
Android.mk是Android工程管理文件,其作用基本等同于Linux环境中的Makefile,在语法上,Android.mk和普通Makefile略有不同,主要区别是Android.mk包含一 ...
- log4j教程 1、概述
log4j是一个用Java编写的可靠,快速和灵活的日志框架(API),它在Apache软件许可下发布. Log4j已经被移植到了C,C++,C#,Perl,Python和Ruby等语言中. ...
- Linux SSH和SFTP服务分离
Linux SSH和SFTP服务分离 学习了:https://www.cnblogs.com/zihanxing/articles/5665383.html 都是监听22端口:
- C#基于Socket的CS模式的完整例子
基于Socket服务器端实现本例主要是建立多客户端与服务器之间的数据传输,首先设计服务器.打开VS2008,在D:\C#\ch17目录下建立名为SocketServer的Windows应用程序.打开工 ...
- demo 微信毛玻璃效果
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Nginx:事件模块
参考资料<深入理解Nginx> 根据不同的系统内核,Nginx会使用不同的事件驱动机制,本次描述的场景是使用epoll来驱动事件的处理. epoll的使用方法 1.int epoll_cr ...
- 2015级C++第7周项目 友元、共享数据保护、多文件结构
[项目1-成员函数.友元函数和一般函数有差别]參考解答 (1)阅读以下的程序,体会凝视中的说明(要执行程序,请找到课程主页并复制代码) //例:使用成员函数.友元函数和一般函数的差别 #include ...
- Burp Suite基本用法
从上一篇已经知道Burp Suite安装.启动方法,本章将会阐述Burp Suite抓包.重放.爆破.双参数爆破.爬虫等基本用法.同博客园看到一篇描述Burp Suite界面各个字段和按钮作用,感兴趣 ...
- Java自动内存管理机制
1.运行时数据区域划分 2.程序计数器 作用:可以看做是当前线程所执行的字节码的行号指示器. 解释:字节码指示器就是通过改变程序计数器的值来指定下一条需要执行的指令.分支,循环等 基础功能就是依赖程序 ...
- 原 [Android]LIstView的HeaderView
目录[-] (1)添加HeaderView之后尺寸布局被忽略. (2)添加HeaderView之后导致OnItemClickListener的position移位 (3)LayoutInflater的 ...