传送门

题解

决策单调性是个啥……导函数是个啥……这题解讲的是啥……我是个啥……

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define LD long double
#define calc(i,j) f[j]+qpow(abs(s[i]-s[j]-L))
using namespace std;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getchar()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getchar());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e5+;
int n,L,P,s[N],q[N],k[N],pr[N];
LD f[N];char str[N][];
inline LD qpow(LD x){
LD res=;int k=P;
while(k){
if(k&) res*=x;
k>>=,x*=x;
}
return res;
}
inline int bound(int x,int y){
int l=x,r=n+;
while(l<r){
int mid=l+r>>;
calc(mid,x)>=calc(mid,y)?r=mid:l=mid+;
}
return l;
}
int main(){
//freopen("testdata.in","r",stdin);
int T=read(),h,t;
while(T--){
n=read(),L=read()+,P=read();
for(int i=;i<=n;++i){
scanf("%s",str[i]);
s[i]=s[i-]+strlen(str[i])+;
}
q[h=t=]=;
for(int i=;i<=n;++i){
while(h<t&&k[h]<=i) ++h;
f[i]=calc(i,q[h]),pr[i]=q[h];
while(h<t&&k[t-]>=bound(q[t],i)) --t;
k[t]=bound(q[t],i),q[++t]=i;
}
if(f[n]>1e18) puts("Too hard to arrange");
else{
printf("%.0Lf\n",f[n]);
q[t=]=n;int u=n;
while(u) q[++t]=u=pr[u];
for(;t;--t){
int i;
for(i=q[t]+;i<q[t-];++i) printf("%s ",str[i]);
puts(str[i]);
}
}
puts("--------------------");
}
return ;
}

洛谷P1912 [NOI2009]诗人小G(决策单调性)的更多相关文章

  1. 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)

    洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...

  2. P1912 [NOI2009]诗人小G[决策单调性优化]

    地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...

  3. bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)

    目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...

  4. [NOI2009]诗人小G 决策单调性优化DP

    第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...

  5. BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)

    题意 题目链接 Sol 很显然的一个dp方程 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 其中\(sum_i = \sum_{j = 1}^i len ...

  6. [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)

    模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...

  7. BZOJ1563:[NOI2009]诗人小G(决策单调性DP)

    Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...

  8. P1912 [NOI2009]诗人小G

    P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...

  9. BZOJ_1563_[NOI2009]诗人小G_决策单调性

    BZOJ_1563_[NOI2009]诗人小G_决策单调性 Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超 ...

随机推荐

  1. ES doc_values介绍2——本质是field value的列存储,做聚合分析用,ES默认开启,会占用存储空间

    一.doc_values介绍 doc values是一个我们再三重复的重要话题了,你是否意识到一些东西呢? 搜索时,我们需要一个“词”到“文档”列表的映射 排序时,我们需要一个“文档”到“词“列表的映 ...

  2. 【leetcode刷题笔记】Path Sum

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  3. java基础回顾之IO

    Java的IO 是Java运用重要部分之一,涉及到的内容也比较多,容易混淆,一段时间不用,可能就会遗忘,要时常回顾记忆一下: (图片来源于网络) Java 流在处理上分为字符流和字节流. 字符流处理的 ...

  4. bzoj 1927 星际竞速 —— 最小费用最大流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1927 首先注意到这是个DAG: 考虑每个点从哪里来,可以是瞬移来的,也可以是从某个点走过来的 ...

  5. Log4Net日志记录介绍

    原文地址 : http://www.cnblogs.com/wolf-sun/p/3347373.html#3009010 简介 log4net库是Apache log4j框架在Microsoft . ...

  6. loadrunner的四个主要部件

    1.VUser Generator :性能脚本开发 2.Controller :提供多线程并发操作 3.Analysis :结果分析 4.Load Generator :负载生成器 ***负载生成器完 ...

  7. JSP标签和EL表达式

    1.jsp标签: sun原生的,直接jsp使用 <jsp:include> -- 实现页面包含,动态包含 <jsp:include page="/index.jsp&quo ...

  8. 2440移植内核到uboot上,打印乱码

    转载请注明出处:http://blog.csdn.net/qq_26093511/article/details/51851368 可能原因: 1. 修改内核 里的晶振大小 arch\arm\mach ...

  9. ng2 中的全屏与退出全屏

    1.进入全屏 launchFullscreen(element) { if(element.requestFullscreen) { element.requestFullscreen(); } el ...

  10. MAXOS安装FFMPEG

    安装brew 安装方法:命令行输入 /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/ins ...