HDU - 6534 Chika and Friendly Pairs
这个题其实也是很简单的莫队,题目要求是给一个序列,询问l-r区间内部,找到有多少对答案满足 i < j 并且
| a[ i ] -a[ j ] | <=k 也就是有多少对,满足差值小于k的个数。
把这个式子展开,其实就是-k<= a[ i ] -a [ j ] <= k 也就是 a[ j ] -k <= a[ i ] <= a[ j ] + k,也就是说,对于某个 j 位置,我们需要在询问的区间内,找到 i < j 并且在[ a[j] -k ,a[j] +k ] 范围中的数的个数,这个其实可以通过树状数组区间查询即可。
但是对于k来说,太大了,树状数组也开不下,所以我们要进行离散化,把a[i],a[i]+k,a[i]-k位置存下来即可(老套路了)保证每个位置都能找得到,然后区间查询即可,然后每次算贡献即可。
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxx = 2e5+;
int block;
int a[maxx];
std::vector<int>vx;
int sum[maxx];
int ans[maxx];
int num;
int n,m,k;
struct node{
int l,r;
int id;
friend bool operator < (const node &a,const node &b){
if(a.l/block==b.l/block){
return a.r<b.r;
}
return a.l/block<b.l/block;
}
}q[maxx];
int low[maxx];
int up[maxx];
int p[maxx];
int lowbit(int x){
return x&(-x);
}
void add(int x,int w){
for(int i=x;i<=*n;i+=lowbit(i)){
sum[i]+=w;
}
return ;
}
int getsum(int x){
int s=;
for(int i=x;i;i-=lowbit(i)){
s+=sum[i];
}
return s;
}
void add(int x){
num+=getsum(up[x])-getsum(low[x]-);
add(p[x],);
}
void del(int x){
add(p[x],-);
num-=getsum(up[x])-getsum(low[x]-);
}
int main(){
while(~scanf("%d%d%d",&n,&m,&k)){
block=sqrt(n);
memset(sum,,sizeof(sum));
memset(ans,,sizeof(ans));
vx.clear();
///绝对值小于等于K
for (int i=;i<=n;i++){
scanf("%d",&a[i]);
vx.push_back(a[i]);
vx.push_back(a[i]+k);
vx.push_back(a[i]-k);
}
num=;
sort(vx.begin(),vx.end());
vx.erase(unique(vx.begin(),vx.end()),vx.end());
int sz=vx.size();
for(int i=;i<=n;i++){
p[i]=lower_bound(vx.begin(),vx.end(),a[i])-vx.begin()+;
low[i]=lower_bound(vx.begin(),vx.end(),a[i]-k)-vx.begin()+;
up[i]=lower_bound(vx.begin(),vx.end(),a[i]+k)-vx.begin()+;
}
for(int i=;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id=i;
}
sort(q+,q++m);
int l=,r=;
num=;
for(int i=;i<=m;i++){
while(l<q[i].l)del(l),l++;
// cout<<num<<" ";
while(l>q[i].l)l--,add(l);
// cout<<num<<" ";
while(r<q[i].r)r++,add(r);
// cout<<num<<" ";
while(r>q[i].r)del(r),r--;
// cout<<num<<" "<<endl;
ans[q[i].id]=num;
}
for(int i=;i<=m;i++){
printf("%d\n",ans[i]);
}
}
return ;
}
HDU - 6534 Chika and Friendly Pairs的更多相关文章
- HDU6534 Chika and Friendly Pairs(莫队,树状数组)
HDU6534 Chika and Friendly Pairs 莫队,树状数组的简单题 #include<bits/stdc++.h> using namespace std; cons ...
- 201⑨湘潭邀请赛 Chika and Friendly Pairs(HDU6534)
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=6534 题意: 给你一个数组,对于第i个数来说,如果存在一个位置j,使得j>i并且a[j]-k&l ...
- HDU-6534-Chika and Friendly Pairs (莫队算法,树状数组,离散化)
链接: https://vjudge.net/contest/308446#problem/C 题意: Chika gives you an integer sequence a1,a2,-,an a ...
- HDU 6534 莫队+ 树状数组
题意及思路:https://blog.csdn.net/tianyizhicheng/article/details/90369491 代码: #include <bits/stdc++.h&g ...
- 2019 CCPC 湖南全国邀请赛
A. Chessboard 做法1 单纯形. 做法2 最大费用可行流问题,行列模型. 对每行建一个点,每列建一个点.物品 \(i\) 在 \((r,c)\),那么 \(r\) 向 \(c\) 连流量为 ...
- AtCoder Regular Contest 092 C - 2D Plane 2N Points(二分图匹配)
Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...
- AtCoderBeginner091-C 2D Plane 2N Points 模拟问题
题目链接:https://abc091.contest.atcoder.jp/tasks/arc092_a 题意 On a two-dimensional plane, there are N red ...
- AtCoder Regular Contest 092 2D Plane 2N Points AtCoder - 3942 (匈牙利算法)
Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...
- HDU 5178 pairs —— 思维 + 二分
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5178 pairs Time Limit: 2000/1000 MS (Java/Others) ...
随机推荐
- JAVA获取磁盘空间
需要把磁盘空间显示在页面上,这样就不用去服务器查看了,方便 两个办法 File file = new File("D:"); long totalSpace = file.getT ...
- Vue. 之 Element table 高度自适应
Vue. 之 Element table 高度自适应 使用vue创建table后,其高度自适应浏览器高度. 在创建的 el-table 中添加:height属性,其值为一个变量(tableHeight ...
- day36 10-Hibernate中的事务:解决丢失更新
演示hibernate如何产生丢失更新的 丢失更新是怎么玩的?首先两个事务先都把它查出来. A事务里面去修改的数据没了,被B事务覆盖掉了.这是被B事务提交覆盖,B事务回滚也能覆盖.这就是丢失更新的效果 ...
- Vue表单验证插件的制作过程
一.表单验证模块的构成 任何表单验证模块都是由 配置――校验――报错――取值 这几部分构成的. 配置: 配置规则 和配置报错,以及优先级 校验: 有在 change 事件校验, 在点击提交按钮的时候校 ...
- QT_获取运行进程所在目录路径_1
QString getProcessPathForWin(int idProcess) { #ifdef Q_OS_WIN // access process path WCHAR name[]; Z ...
- linux系统搭建zookeeper集群
转载至:https://blog.csdn.net/weixin_38111957/article/details/82927878 一.引言 今天咱们就来搭建一下zookeeper集群,当然搭建集群 ...
- Spring MVC JSON自己定义类型转换
版权声明:版权归博主全部.转载请带上本文链接.联系方式:abel533@gmail.com https://blog.csdn.net/isea533/article/details/28625071 ...
- 总体<导学>
有一些奇奇怪怪的数据集 波士顿房价数据集 使用sklearn.datasers.load_boston 加载相关的数据集 重要参数 return_X_y 表示是否返回target (价格) 默认为Fa ...
- js自定义滚动条
今天听到别人说自定义滚动条,所以就在吃饭的时间写了个 html部分 <div class="out" id="out"> <div class ...
- LeetCode Top 100 Liked Questions in Golang(updating...)
leetcode go语言版本,主要为了熟悉下语言 1. Two Sum 双指针版本, O(NlogN) func twoSum(nums []int, target int) []int { val ...