首先对于n<=100的点,直接暴力dp,f[i][j][k]表示时间为i,在i,j位置的方案数,枚举转移即可,期望得分40。

     if(n<=)
{
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
f[i][x][]=(f[i-][x-][]+f[i-][x+][])%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
if(x==||y==)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=n+;x++)
for(int y=;y<=n+;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
}

代码实现

type0:这里

type1:显然卡特兰数……

type2:居然是个dp

f[i]表示走了i步回到原点的方案数,枚举第一次回到原点时走过的步数j(为了存在合法解,j为偶数),则此时方案数为f[i-j]*catalan(j/2-1),复杂度为O(n^2)所以最大范围只出到1000.

type3:

枚举横向移动了多少步.横向移动i步时(为了存在合法解,i必须是偶数),方案数为C(n,i)*catalan(i/2)*catalan((n-i)/2)

可以这样考虑:横向移动了i步,因为只能在第一象限,所以横向是一个卡特兰数,同理纵向也是一个卡特兰数。

 #include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
using namespace std;
const int mod=1e9+;
int n,t;
int f[][][];
LL f1[];
LL jc[];
LL poww(LL a,int b,int mod)
{
LL ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;
b=b>>;
}
return ans;
}
LL C(int n,int m)
{
if(m>n)return ;
if(!m)return ;
return jc[n]*poww(jc[m],mod-,mod)%mod*poww(jc[n-m],mod-,mod)%mod;
}
LL H(int i)
{
return C(*i,i)*poww(i+,mod-,mod)%mod;
}
inline int read();
signed main()
{
n=read(),t=read();
if(n<=)
{
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
f[i][x][]=(f[i-][x-][]+f[i-][x+][])%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=;x++)
for(int y=;y<=;y++)
if(x==||y==)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
if(t==)
{
f[][][]=;
for(int i=;i<=n;i++)
for(int x=;x<=n+;x++)
for(int y=;y<=n+;y++)
f[i][x][y]=((f[i-][x-][y]+f[i-][x+][y])%mod+(f[i-][x][y-]+f[i-][x][y+])%mod)%mod;
printf("%d\n",f[n][][]);
return ;
}
}
else
{
LL ans=;
jc[]=;for(int i=;i<=;i++)jc[i]=jc[i-]*i%mod;
if(t==)
{
int s,x,z,y;
for(s=;s<=n/;s++)
{
x=s;z=y=(n-s-x)/;
ans=(ans+jc[n]*poww(jc[s],mod-,mod)%mod*poww(jc[x],mod-,mod)%mod*poww(jc[z],mod-,mod)%mod*poww(jc[y],mod-,mod)%mod)%mod;
}
printf("%lld\n",ans%mod);
return ;
}
if(t==)
{
n=n/;ans=;
for(int i=n+;i<=*n;i++)ans=ans*i%mod;
ans=ans*poww(jc[n],mod-,mod);
printf("%lld\n",ans%mod);
return ;
}
if(t==)
{
f1[]=;
for(int i=;i<=n;i+=)
for(int j=;j<=i;j+=)
f1[i]=(f1[i]+*f1[i-j]*H(j/-)%mod)%mod;
printf("%lld\n",f1[n]%mod);
return ;
}
if(t==)
{
for(int i=;i<=n;i+=)
ans=(ans+C(n,i)*H(i/)%mod*H((n-i)/)%mod)%mod;
printf("%lld\n",ans);
return ;
}
}
}
inline int read()
{
int s=;char a=getchar();
while(a<''||a>'')a=getchar();
while(a>=''&&a<=''){s=s*+a-'';a=getchar();}
return s;
}

暴力和正解全在这里!!

HZOJ 题的更多相关文章

  1. java基础集合经典训练题

    第一题:要求产生10个随机的字符串,每一个字符串互相不重复,每一个字符串中组成的字符(a-zA-Z0-9)也不相同,每个字符串长度为10; 分析:*1.看到这个题目,或许你脑海中会想到很多方法,比如判 ...

  2. 【Java每日一题】20170106

    20170105问题解析请点击今日问题下方的"[Java每日一题]20170106"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...

  3. 【Java每日一题】20170105

    20170104问题解析请点击今日问题下方的"[Java每日一题]20170105"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...

  4. 【Java每日一题】20170104

    20170103问题解析请点击今日问题下方的"[Java每日一题]20170104"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...

  5. 【Java每日一题】20170103

    20161230问题解析请点击今日问题下方的"[Java每日一题]20170103"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...

  6. SQL面试笔试经典题(Part 1)

    本文是在Cat Qi的原贴的基础之上,经本人逐题分别在MySql数据库中实现的笔记,持续更新... 参考原贴:http://www.cnblogs.com/qixuejia/p/3637735.htm ...

  7. 刷LeetCode的正确姿势——第1、125题

    最近刷LeetCode比较频繁,就购买了官方的参考电子书 (CleanCodeHandbook),里面有题目的解析和范例源代码,可以省去非常多寻找免费经验分享内容和整理这些资料的时间.惊喜的是,里面的 ...

  8. AWS的SysOps认证考试样题解析

    刚考过了AWS的developer认证,顺手做了一下SysOps的样题.以下是题目和答案. When working with Amazon RDS, by default AWS is respon ...

  9. AWS开发人员认证考试样题解析

    最近在准备AWS的开发人员考试认证.所以特意做了一下考试样题.每道题尽量给出了文档出处以及解析. Which of the following statements about SQS is true ...

随机推荐

  1. 大半夜吃饱了撑的帮人调IE玩

      那高手的也是IE6,我也是IE6,但是他的IE6就总是进recv,我的IE6就进WSARecv,一点都不科学...擦..不调了.

  2. 【洛谷P3131】 【USACO16JAN】子共七

    P3131 [USACO16JAN]子共七Subsequences Summing to Sevens 题目描述 Farmer John's cows are standing in a row, a ...

  3. 洛谷P2258 子矩阵[2017年5月计划 清北学堂51精英班Day1]

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  4. web前端开发必备技术

    1.Vue.js是什么? Vue.js(读音 /vjuː/, 类似于 view) 是一套构建用户界面的 渐进式框架.与其他重量级框架不同的是,Vue 采用自底向上增量开发的设计.Vue 的核心库只关注 ...

  5. QT_获取运行进程所在目录路径_1

    QString getProcessPathForWin(int idProcess) { #ifdef Q_OS_WIN // access process path WCHAR name[]; Z ...

  6. Java连接Neo4j的两种方式

    1.Neo4j数据库的两种方式 Neo4j可以以两种方式运行: Java应用程序中的嵌入式数据库 通过REST的独立服务器 不管哪一种方式,这个选择不会影响查询和使用数据库的方式. 它是由应用程序的性 ...

  7. 配置了两天python【python可以的】

    首先是看cs231n 发现代码的版本是py2 而我只装了 py3(anaconda3) 怎么办呢 于是想办法装了 anaconda2 并与之共存 ,调用的时候用 activate py2调用 http ...

  8. python中几种单例模式的实现

    单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...

  9. CSS3圆环旋转效果

    html结构: <div class="demo"></div> css结构: .demo{ width:250px; height:250px; bord ...

  10. 深入浅出Cocoa之类与对象【转】

    最近打算写一些ObjC中比较底层的东西,尤其是 runtime 相关的.苹果已经将 ObjC runtime 代码开源了,我们可以从:http://opensource.apple.com/sourc ...