description


analysis

  • 区间\(DP\),首先按照键值排个序,这样保证树的中序遍历就为原序列

  • 设\(f[0][i][j]\)表示\([i..j]\)区间作为\([unknown..i-1]\)的右儿子的最大和,\(f[1][i][j]\)就是\([i..j]\)区间作为\([j+1..unknown]\)的左儿子

  • 预处理\(f\)的初值是很明显的,然后\(O(n^2log)\)预处理出两两数之间的\(\gcd\)

  • 对于一段区间\([i..j]\),枚举中转点\(k\),表示\([i..k-1],[k+1,j]\)分别作为\(k\)的左右儿子

  • \(k=i\)或\(k=j\)特殊转移,\(i<k<j\)可知\([i..j]\)可由\(f[1][i][k-1],f[0][k+1][j]\)转移得到

  • 具体转移到\(0\)或\(1\)取决于\(a[k]\)与\(a[i-1],a[j+1]\)是否符合条件(\(\gcd>1\))


code

#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#define MAXN 305
#define INF 1000000007
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i) using namespace std; ll f[2][MAXN][MAXN];
ll g[MAXN][MAXN];
ll sum[MAXN];
ll n,ans=-INF; struct node
{
ll x,y;
}a[MAXN]; inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline ll max(ll x,ll y){return x>y?x:y;}
inline bool cmp(node a,node b){return a.x<b.x;}
inline ll get(ll x,ll y){return sum[y]-sum[x-1];}
inline ll gcd(ll x,ll y){return x%y==0?y:gcd(y,x%y);}
int main()
{
freopen("T2.in","r",stdin);
//freopen("tree.in","r",stdin);
//freopen("tree.out","w",stdout);
n=read();
fo(i,0,n)fo(j,0,n)f[0][i][j]=f[1][i][j]=-INF;
fo(i,1,n)a[i].x=read(),a[i].y=read();
sort(a+1,a+n+1,cmp);
fo(i,1,n)fo(j,1,n)g[i][j]=gcd(a[i].x,a[j].x);
fo(i,1,n)
{
sum[i]=sum[i-1]+a[i].y;
if (i!=1 && g[i][i-1]>1)f[0][i][i]=a[i].y;
if (i!=n && g[i][i+1]>1)f[1][i][i]=a[i].y;
}
fo(len,2,n)
{
fo(i,1,n-len+1)
{
ll j=i+len-1,tmp;
fo(k,i,j)
{
if (k==i)tmp=f[0][i+1][j]+get(i,j);
else if (k==j)tmp=f[1][i][j-1]+get(i,j);
else tmp=f[1][i][k-1]+f[0][k+1][j]+get(i,j);
if (i!=1 && g[k][i-1]>1)f[0][i][j]=max(f[0][i][j],tmp);
if (j!=n && g[k][j+1]>1)f[1][i][j]=max(f[1][i][j],tmp);
if (n==len)ans=max(ans,tmp);
}
}
}
printf("%lld\n",ans<0?-1ll:ans);
return 0;
}

【JZOJ6287】扭动的树的更多相关文章

  1. test20180922 扭动的树

    题意 分析 二叉查找树按照键值排序的本质是中序遍历,每次我们可以在当前区间中提取出一个根,然后划分为两个子区间做区间DP.记\(f(i,j,k)\)表示区间[i, j]建子树,子树根节点的父亲是第k个 ...

  2. NOIp2018集训test-9-22(am/pm) (联考三day1/day2)

    szzq学长出的题,先orz一下. day1 倾斜的线 做过差不多的题,写在我自己的博客里,我却忘得一干二净,反而李巨记得清清楚楚我写了的. 题目就是要最小化这个东西 $|\frac{y_i-y_j} ...

  3. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

  4. ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单

    前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...

  5. 再讲IQueryable<T>,揭开表达式树的神秘面纱

    接上篇<先说IEnumerable,我们每天用的foreach你真的懂它吗?> 最近园子里定制自己的orm那是一个风生水起,感觉不整个自己的orm都不好意思继续混博客园了(开个玩笑).那么 ...

  6. HDU1671——前缀树的一点感触

    题目http://acm.hdu.edu.cn/showproblem.php?pid=1671 题目本身不难,一棵前缀树OK,但是前两次提交都没有成功. 第一次Memory Limit Exceed ...

  7. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  8. [C#] C# 知识回顾 - 表达式树 Expression Trees

    C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...

  9. bzoj3207--Hash+主席树

    题目大意: 给定一个n个数的序列和m个询问(n,m<=100000)和k,每个询问包含k+2个数字:l,r,b[1],b[2]...b[k],要求输出b[1]~b[k]在[l,r]中是否出现. ...

随机推荐

  1. java MySQl数据库连接

    <%@ page import="java.sql.Connection" %> <%@ page import="java.sql.DriverMan ...

  2. 天道神诀--IPSAN实现多链路以及多路径安装

    # linux6 环境需求 ISCSI服务端: 2张网卡,足够的磁盘空间 iscsi客户端: 2张网卡(与服务端网段相同) ISCSI服务端配置: 与1张网卡配置主要差别在于配置文件中的允许访问网段, ...

  3. 使用PHP如何去除字符串结尾的字符

    前言 在工作中遇到一个需求:一串字符串,如"迅雷官方下载"."快播5.0下载",需要去掉他们结尾的"官方下载"和"下载" ...

  4. JavaScript中this对象原理简洁说明

    今天看了阮一峰大神的博客文章:JavaScript 的this原理,把纠结很久的this的指向终于理解清楚了 原文:http://www.ruanyifeng.com/blog/2018/06/jav ...

  5. 文件IO 例子

    例子1: 测试最多打开多少个文件 #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> # ...

  6. Mysql优化-分区

    分区简介 分区是根据一定的规则,数据库把一个表分解成多个更小的.更容易管理的部分.就访问数据库应用而言,逻辑上就只有一个表或者一个索引,但实际上这个表可能有N个物理分区对象组成,每个分区都是一个独立的 ...

  7. Jenkins 搭建 .NET Core 持续集成环境

    关于c#的.Net FrameWork 的集成环境以及MsBuild的配置可以看     jenkins搭建.NET FrameWork持续集成环境 这篇文章     关于.NET Core 这个项目 ...

  8. The chance for love doesn't come around every day.

    The chance for love doesn't come around every day.爱的机会不是每天都有的.

  9. thinkphp 日志驱动

    日志驱动默认的命名空间位于Think\Log\Driver,驱动类需要实现的接口方法包括: 方法 说明 架构方法 __construct($config=array()) 写入方法 write($lo ...

  10. thinkphp 动态配置

    之前的方式都是通过预先定义配置文件的方式,而在具体的操作方法里面,我们仍然可以对某些参数进行动态配置(或者增加新的配置),主要是指那些还没有被使用的参数. 设置新的值: C('参数名称','新的参数值 ...