LJJ爱数数

求\(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\epsilon(gcd(i,j,k))(\frac{1}{i}+\frac{1}{j}==\frac{1}{k}),n\leq 10^{12}\)

显然无法用Mobius反演,问题在于\(\frac{1}{i}+\frac{1}{j}==\frac{1}{k}\),要将其转换为gcd条件。

法一:先约数拆分,再证明对应相等

分数我们无法处理,所以有

\[(i+j)k=ij
\]

设\(g=gcd(i,j),I=i/g,J=j/g\),接着有

\[(I+J)k=IJg,gcd(I,J)=1
\]

\[gcd(i,j,k)=gcd(g,k)=1
\]

考虑分数反证,设

\[\frac{I+J}{g}=\frac{IJ}{k}=d
\]

\(if(d>1)\)

\[d|IJ,d|(I+J)
\]

\[gcd(I,J)=1\Rightarrow gcd(I+J,IJ)=1
\]

所以与原命题矛盾,故\(d=1\),因此\(I+J=g,IJ=k,gcd(g,I)=1\),满足了等式,也满足了\(gcd(g,k)=1\),所以自然枚举g,再枚举I,以此k也就确定了,接下来问题在于范围,显然要回到\(i,j,k\)

\[g^2=i+j\Rightarrow g\leq\sqrt{2n}\Rightarrow k\leq n
\]

现在考虑\(I\)

\[1\leq i=Ig,j=(g-I)g\leq n\Downarrow
\]

\[I\in[max(1,\frac{g^2-n}{g}),min([n/g],g-1)]
\]

于是总上,设\(L(g),R(g)\)为在g意义下\(I\)的范围,有

\[ans=\sum_{g=1}^{\sqrt{2n}}\sum_{I=L(g)}^{R(g)}(gcd(g,I)==1)
\]

注意到后式取值范围受到g的影响,所以对后式单独维护

\[f(d)=\sum_{I=L(g)}^{R(g)}(gcd(g,I)==d)
\]

\[F(d)=([R(g)/d]-[(L(g)-1)/d])(d|g)
\]

由Mobius反演定理,我们有

\[f(d)=\sum_{d|x}(x|g)([R(g)/x]-[(L(g)-1)/x])\mu(x/d)
\]

因此

\[f(1)=\sum_{x|g}([R(g)/x]-[(L(g)-1)/x])\mu(x)
\]

所以

\[ans=\sum_{g=1}^{\sqrt{2n}}\sum_{x|g}([R(g)/x]-[(L(g)-1)/x])\mu(x)
\]

\[=\sum_{x=1}^{\sqrt{2n}}\mu(x)\sum_{x|g}^{^{\sqrt{2n}}}([R(g)/x]-[(L(g)-1)/x])
\]

显然后式可以暴力算,时间复杂度应为\(O(\sqrt{n}log(\sqrt{n}))\)。

参考代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#define il inline
#define ri register
#define ll long long
using namespace std;
bool check[2000000];
int prime[150000],pt,mu[2000000],
R[2000000],L[2000000];
il void prepare(int);
template<class free>il free Min(free,free);
template<class free>il free Max(free,free);
int main(){
ll n,sn,i,j,ans(0);
scanf("%lld",&n),sn=sqrt(n<<1),prepare(sn);
for(i=1;i<=sn;++i)L[i]=Max(i-n/i,1ll),
R[i]=Min(i-1,n/i);
for(i=1;i<=sn;++i)
for(j=i;j<=sn;j+=i)
ans+=mu[i]*(R[j]/i-(L[j]-1)/i);
printf("%lld",ans);
return 0;
}
il void prepare(int n){
int i,j;check[1]|=mu[1]|=true;
for(i=2;i<=n;++i){
if(!check[i])prime[++pt]=i,mu[i]=-1;
for(j=1;j<=pt&&i*prime[j]<=n;++j){
check[i*prime[j]]|=true;
if(!(i%prime[j]))break;
mu[i*prime[j]]=~mu[i]+1;
}
}
}
template<class free>il free Max(free a,free b){return a>b?a:b;}
template<class free>il free Min(free a,free b){return a<b?a:b;}

法二:先证明对应相等再约数拆分

注意到\(ik+jk=ij\),类似因式分解形式,于是添项因式分解,

\[k^2+ij-ik-jk=k^2
\]

\[k(k-i)+j(i-k)=k^2
\]

\[(j-k)(i-k)=k^2
\]

再进行约数拆分

\[j-k=ln^2,i-k=lm^2,k=lmn
\]

\[gcd(i,j,k)=1\Rightarrow l=1,j-k=n^2,i-k=m^2,k=mn
\]

\[j=mn+n^2,i=mn+m^2,k=mn
\]

\[gcd(mn+n^2,mn+m^2,mn)=gcd(gcd(m,n)(m+n),mn)=1
\]

\[gcd(m,n)=1
\]

故充分条件为\(j-k=n^2,i-k=m^2,gcd(m,n)=1\),故考虑枚举n,m,为了与题目数据范围的n区分,把数据范围的n改为N,现在关键在于找数据范围,回到i,j,首先显然\(m\in[1,\sqrt{N}]\)

\[j=mn+n^2,i=mn+m^2,k=mn\in[1,N]\Downarrow
\]

\[n\leq min(\frac{-m+\sqrt{m^2+4N}}{2},\frac{N-m^2}{m})
\]

但事实上,我们只能枚举整数,但是m,n有可能为无理数,但是我们可以证明这样没有影响


设\(m=\sqrt{x},n=\sqrt{y}(x,y\in Z)\),于是有\(i=\sqrt{xy}+x,j=\sqrt{xy}+y,k=\sqrt{xy}\)

但是因为\(i,j\in Z\),所以必然存在一个\(z\in Z\),满足\(xy=z^2\),容易知道x,y,z两两不互质,所以有

\(i=x+z,j=y+z,k=z\),容易知道\(i,j,k\)不互质,那么与题设矛盾,于是不可能。


设其范围为\(r(m)\),于是有

\[ans=\sum_{i=1}^{\sqrt{N}}\sum_{j=1}^{r(i)}\epsilon(gcd(i,j))
\]

同法一,后式是变的,维护后式,设

\[f(d)=\sum_{j=1}^{r(i)}(gcd(i,j)==d)
\]

\[F(d)=(d|i)[r(i)/d]
\]

由Mobius反演定理,我们有

\[f(d)=\sum_{d|x,x|i}[r(i)/x]\mu(x/d)
\]

\[f(1)=\sum_{x|i}[r(i)/x]\mu(x)
\]

代入原式即

\[ans=\sum_{i=1}^{\sqrt{N}}\sum_{x|i}[r(i)/x]\mu(x)=\sum_{x=1}^{\sqrt{N}}\mu(x)\sum_{x|i}[r(i)/x]
\]

显然后式处理平均只要\(log(\sqrt(N))\),所以时间复杂度应为\(\sqrt{N}log(\sqrt{N})\)。

参考代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#define il inline
#define ri register
#define ll long long
using namespace std;
bool check[1000001];
int prime[100001],pt,mu[1000001],
li[1000001];
il void prepare(int);
template<class free>
il free Min(free,free);
int main(){
ll n,ans(0),sn,i,j;
scanf("%lld",&n),sn=sqrt(n),prepare(sn);
for(i=1;i<=sn;++i)li[i]=Min((n-i*i)/i,(ll)(sqrt(i*i+4*n)-i)/2);
for(i=1;i<=sn;++i)
for(j=i;j<=sn;j+=i)
ans+=mu[i]*(li[j]/i);
printf("%lld",ans);
return 0;
}
template<class free>
il free Min(free x,free y){
return x<y?x:y;
}
il void prepare(int n){
int i,j;check[1]|=mu[1]|=true;
for(i=2;i<=n;++i){
if(!check[i])prime[++pt]=i,mu[i]=-1;
for(j=1;j<=pt&&i*prime[j]<=n;++j){
check[i*prime[j]]|=true;
if(!(i%prime[j]))break;
mu[i*prime[j]]=~mu[i]+1;
}
}
}

LJJ爱数数的更多相关文章

  1. 「LOJ6482」LJJ爱数数

    「LOJ6482」LJJ爱数数 解题思路 : 打表发现两个数 \(a, b\) 合法的充要条件是(我不管,我就是打表过的): \[ a + b = \text{gcd}(a, b)^2 \] 设 \( ...

  2. P4844 LJJ爱数数

    题目 P4844 LJJ爱数数 本想找到莫比乌斯反演水题练练,结果直接用了两个多小时才做完 做法 \(\sum\limits_{a=1}^n\sum\limits_{b=1}^n\sum\limits ...

  3. P4844 LJJ爱数数 数论

    思路: 化简后得到(a+b)c=ab,设g=(a,b),A=a/g,B=b/g,则g(A+B)c=ABg^2,即(A+B)c=ABg 由题目已知条件:(a,b,c)=1,即(g,c)=1,g|(A+B ...

  4. [HZOI 2016]我们爱数数

    [HZOI 2016]我们爱数数 题目大意: 一张圆桌,每个位置按顺时针从\(1\)到\(n\)编号.有\(n\)个人,编号从\(1\)到\(n\).如果编号为\(i\)的人坐到了编号为\(i\)的位 ...

  5. COJ 0036 数数happy有多少个?

    数数happy有多少个? 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 图图是个爱动脑子.观察能力很强的好学生.近期他正学英语 ...

  6. 【BZOJ】【3530】【SDOI2014】数数

    AC自动机/数位DP orz zyf 好题啊= =同时加深了我对AC自动机(这个应该可以叫Trie图了吧……出边补全!)和数位DP的理解……不过不能自己写出来还真是弱…… /************* ...

  7. BZOJ3530: [Sdoi2014]数数

    3530: [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 322  Solved: 188[Submit][Status] ...

  8. 【HDU3530】 [Sdoi2014]数数 (AC自动机+数位DP)

    3530: [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 682  Solved: 364 Description 我们称一 ...

  9. BZOJ 3530: [Sdoi2014]数数 [AC自动机 数位DP]

    3530: [Sdoi2014]数数 题意:\(\le N\)的不含模式串的数字有多少个,\(n=|N| \le 1200\) 考虑数位DP 对于长度\(\le n\)的,普通套路DP\(g[i][j ...

随机推荐

  1. [JZOJ 5814] 树

    题目:从u到v经过多少条边. 思路: 考虑他是怎么走的?? 从\(u\)到\(v\)一定是\(fa[u]\),\(fa[fa[u]]\),反正就是走\(LCA\),那么如果算出每个点到父亲的期望步数, ...

  2. iOS 点击Application icon加载推送通知Data

    今天做APNS远程推送通知遇到了一个问题,就是手机接收到通知的时候,如果马上点击通知的 alert view时候,系统马上唤醒你的Application,通知或调用你的didReceiveLocalN ...

  3. C++输入cin详解

    输入原理: 程序的输入都建有一个缓冲区,即输入缓冲区.一次输入过程是这样的,当一次键盘输入结束时会将输入的数据存入输入缓冲区,而cin函数直接从输入缓冲区中取数据.正因为cin函数是直接从缓冲区取数据 ...

  4. Java-杂项-java.nio:java.nio

    ylbtech-Java-杂项-java.nio:java.nio java.nio全称java non-blocking IO,是指jdk1.4 及以上版本里提供的新api(New IO) ,为所有 ...

  5. Spring Boot 启动,1 秒搞定!

    Java技术栈 www.javastack.cn 优秀的Java技术公众号 原文: dev.to 翻译: ImportNew.com - 唐尤华译文: http://www.importnew.com ...

  6. unittest(2)

    测试用例执行顺序 1.setUp和tearDown相关 setUp:表示前置条件,它在每一个用例执行之前必须会执行一次        setUp可以理解为我们需要自动化测试时,需要打开网页窗口,输入对 ...

  7. 如果json中的key需要首字母大写怎么解决?

    一般我们命名都是驼峰式的,可是有时候和第三方接口打交道,也会遇到一些奇葩,比如首字母大写........额 这是个什么鬼,对方这么要求,那我们也得这么写呀. 于是乎,第一种方式:把类中的字段首字母大写 ...

  8. 归档和解档配合NSFile存储数据

    NSString *Name = @"yc"; //第一个常量NSDocumentDirectory表示正在查找沙盒Document目录的路径(如果参数为NSCachesDirec ...

  9. sql(10) sum

    SUM() 函数SUM 函数返回数值列的总数(总额).SQL SUM() 语法SELECT SUM(column_name) FROM table_name新建表 StudentSS_id Grade ...

  10. hdu多校第二场1011 (hdu6601) Keen On Everything But Triangle 主席树

    题意: 给定一个数列,每次询问一个区间,问这个区间中的值可组成的周长最大的三角形的周长. 题解: 定理1:给定一些值,这些值中组成边长最大的三角形的三条边的大小排名一定是连续的. 证明:假如第k大,第 ...