【JZOJ3423】Vani和Cl2捉迷藏&【BZOJ1143】祭祀river
description
vani和cl2在一片树林里捉迷藏……
这片树林里有N座房子,M条有向道路,组成了一张有向无环图。
树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔。如果从房子A沿着路走下去能够到达B,那么在A和B里的人是能够相互望见的。
现在cl2要在这N座房子里选择K座作为藏身点,同时vani也专挑cl2作为藏身点的房子进去寻找,为了避免被vani看见,cl2要求这K个藏身点的任意两个之间都没有路径相连。
为了让vani更难找到自己,cl2想知道最多能选出多少个藏身点?
在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都
会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着
两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。
由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必
须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣
的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。
analysis
考场想了个\(naive\)的伪正解
\(O(n^2)\)处理出两两点是否可达,然后相当于求一个最大完全图,其中两两点互不可达
不就求一个最大团,但是\(T90\),怎么搞都过不了
正解先用\(floyd\)搞一个什么傻逼传递闭包(对就是预处理两两点是否可达)
因为最小路径覆盖数\(=n-\)二分图最大匹配数,于是拆点然后跑一个匈牙利就行
大概就这样吧
code
#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 205
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
using namespace std;
bool bz[MAXN][MAXN];
bool flag[MAXN];
ll a[MAXN][MAXN];
ll f[MAXN];
ll n,m,ans;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline bool find(ll x)
{
fo(i,1,a[x][0])if (flag[a[x][i]])
{
flag[a[x][i]]=0;
if (!f[a[x][i]] || find(f[a[x][i]])){f[a[x][i]]=x;return 1;}
}
return 0;
}
int main()
{
freopen("T2.in","r",stdin);
n=read(),m=read();
fo(i,1,m)bz[read()][read()]=1;
fo(k,1,n)fo(i,1,n)if (bz[i][k])
fo(j,1,n)if (bz[k][j])bz[i][j]=1;
fo(i,1,n)fo(j,1,n)if (bz[i][j])a[i][++a[i][0]]=j;
fo(i,1,n)
{
memset(flag,1,sizeof(flag));
if (find(i))++ans;
}
printf("%lld\n",n-ans);
return 0;
}
【JZOJ3423】Vani和Cl2捉迷藏&【BZOJ1143】祭祀river的更多相关文章
- POJ1422 Air Raid 和 CH6902 Vani和Cl2捉迷藏
Air Raid Language:Default Air Raid Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9547 A ...
- bzoj1143 祭祀river(最大独立集)
[CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2175 Solved: 1098[Submit][Status] ...
- 「Poetize5」Vani和Cl2捉迷藏
描述 Description 这片树林里有N座房子,M条有向道路,组成了一张有向无环图.树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔.如果从房子A沿着路走下去能够到达B,那么在A和 ...
- [tyvj1957 Poetize5] Vani和Cl2捉迷藏 (最小路径可重点覆盖+二分图最大匹配)
传送门 Description 这片树林里有N座房子,M条有向道路,组成了一张有向无环图. 树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔.如果从房子A沿着路走下去能够到达B,那么在 ...
- codevs 2494 Vani和Cl2捉迷藏
/* 一开始大意了 以为和bzoj上的祭祀是一样的(毕竟样例都一样) 这里不知相邻的点可以相互到达 间接相连的也可以到达 所以floyed先建立一下关系 再跑最大独立集 下面贴一下95 和 100的代 ...
- CODE[VS]2494 Vani和Cl2捉迷藏
原题链接 这里有一个结论:最多能选取的藏身点个数等于最小路径可重复点覆盖的路径总数. 所以我们可以先传递闭包,然后求最小路径点覆盖即可. #include<cstdio> #include ...
- joyoi1957 「Poetize5」Vani和Cl2捉迷藏
最小路径可重点覆盖.先传递闭包,然后拆点,\(n-\)最大匹配,看算法竞赛进阶指南. #include <iostream> #include <cstring> #inclu ...
- BZOJ-1143&&BZOJ-2718 祭祀river&&毕业旅行 最长反链(Floyed传递闭包+二分图匹配)
蛋蛋安利的双倍经验题 1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1901 Solved: 951 ...
- BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3236 Solved: 1651 [Submit] ...
随机推荐
- CVE-2017-3248简单复现
我是这样操作的 目标跟windows在一个段,linux是另一个段的,我的虚拟机 windows主机上 `java -cp ysoserial.jar ysoserial.exploit.JRMPLi ...
- Java:关于main方法的10道面试题
感觉假期过得好快,东西也丢得快. 假期吃喝玩乐之余也来温故一下Java知识,下面给大家整理了10道Java main方法的经典面试题,都来挑战一下自己的Java基础知识吧! 1.main方法是做什么用 ...
- sort()和优先队列的总结
一.关于sort函数 sort()排序函数默认是从小到大, a={5,3,2,1,6 }; sort(a,a+n); //输出是1 2 3 5 6 这里如果要从到小排序,则有两种方式可以满足 (1) ...
- Window下,前后端分离项目,登录权限验证中的,Redis相关操作
[1]官网下载Redis(解压版) https://redis.io/download [2]切换到目录下打开DOS,执行指令启动Redis redis-server.exe redis.window ...
- 今天真的很SB
在公司Review系统网页上,写了一篇几百字的作文, 然后突然手一抖,竟然没有保存就切换页面了, 赶快退回来...没了,啥都没了... 怎么办... 还好洒家N久之前看了一本什么什么杂七杂八的书, 里 ...
- Java基础知识之常见关键字以及概念总结
static 特点: 随着类的加载而加载 优先于对象存在 被所有对象所共享 可以直接被类名调用 使用注意: 静态方法只能访问静态成员 但是非静态成员可以直接访问静态成员 静态方法中不可用使用this, ...
- 2019-8-16-调试时限制程序使用-CPU-核心数模拟低端设备
title author date CreateTime categories 调试时限制程序使用 CPU 核心数模拟低端设备 lindexi 2019-08-16 16:11:32 +0800 20 ...
- 字典配合split分裂填充
Sub 配送日报()lastrow = Sheets("运营日报").Range("a1048576").End(xlUp).Rowarr = Sheets(& ...
- 什么是 Hexo?
Hexo 文档 欢迎使用 Hexo,本文档将帮助您快速上手.如果您在使用过程中遇到问题,请查看 问题解答 中的解答,或者在 GitHub.Google Group 上提问. 什么是 Hexo? H ...
- 校园商铺-2Logback配置与使用-2Logback配置
logback配置文件加载顺序 logback:程序在运行的时候,会按照一定的顺序去加载logbook相关的配置文件. 如果我们在配置里面制定了logbackConfigurationFile这个属性 ...