【JZOJ3423】Vani和Cl2捉迷藏&【BZOJ1143】祭祀river
description
vani和cl2在一片树林里捉迷藏……
这片树林里有N座房子,M条有向道路,组成了一张有向无环图。
树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔。如果从房子A沿着路走下去能够到达B,那么在A和B里的人是能够相互望见的。
现在cl2要在这N座房子里选择K座作为藏身点,同时vani也专挑cl2作为藏身点的房子进去寻找,为了避免被vani看见,cl2要求这K个藏身点的任意两个之间都没有路径相连。
为了让vani更难找到自己,cl2想知道最多能选出多少个藏身点?
在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都
会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着
两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。
由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必
须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣
的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。
analysis
考场想了个\(naive\)的伪正解
\(O(n^2)\)处理出两两点是否可达,然后相当于求一个最大完全图,其中两两点互不可达
不就求一个最大团,但是\(T90\),怎么搞都过不了
正解先用\(floyd\)搞一个什么傻逼传递闭包(对就是预处理两两点是否可达)
因为最小路径覆盖数\(=n-\)二分图最大匹配数,于是拆点然后跑一个匈牙利就行
大概就这样吧
code
#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 205
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
using namespace std;
bool bz[MAXN][MAXN];
bool flag[MAXN];
ll a[MAXN][MAXN];
ll f[MAXN];
ll n,m,ans;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline bool find(ll x)
{
fo(i,1,a[x][0])if (flag[a[x][i]])
{
flag[a[x][i]]=0;
if (!f[a[x][i]] || find(f[a[x][i]])){f[a[x][i]]=x;return 1;}
}
return 0;
}
int main()
{
freopen("T2.in","r",stdin);
n=read(),m=read();
fo(i,1,m)bz[read()][read()]=1;
fo(k,1,n)fo(i,1,n)if (bz[i][k])
fo(j,1,n)if (bz[k][j])bz[i][j]=1;
fo(i,1,n)fo(j,1,n)if (bz[i][j])a[i][++a[i][0]]=j;
fo(i,1,n)
{
memset(flag,1,sizeof(flag));
if (find(i))++ans;
}
printf("%lld\n",n-ans);
return 0;
}
【JZOJ3423】Vani和Cl2捉迷藏&【BZOJ1143】祭祀river的更多相关文章
- POJ1422 Air Raid 和 CH6902 Vani和Cl2捉迷藏
Air Raid Language:Default Air Raid Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9547 A ...
- bzoj1143 祭祀river(最大独立集)
[CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2175 Solved: 1098[Submit][Status] ...
- 「Poetize5」Vani和Cl2捉迷藏
描述 Description 这片树林里有N座房子,M条有向道路,组成了一张有向无环图.树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔.如果从房子A沿着路走下去能够到达B,那么在A和 ...
- [tyvj1957 Poetize5] Vani和Cl2捉迷藏 (最小路径可重点覆盖+二分图最大匹配)
传送门 Description 这片树林里有N座房子,M条有向道路,组成了一张有向无环图. 树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔.如果从房子A沿着路走下去能够到达B,那么在 ...
- codevs 2494 Vani和Cl2捉迷藏
/* 一开始大意了 以为和bzoj上的祭祀是一样的(毕竟样例都一样) 这里不知相邻的点可以相互到达 间接相连的也可以到达 所以floyed先建立一下关系 再跑最大独立集 下面贴一下95 和 100的代 ...
- CODE[VS]2494 Vani和Cl2捉迷藏
原题链接 这里有一个结论:最多能选取的藏身点个数等于最小路径可重复点覆盖的路径总数. 所以我们可以先传递闭包,然后求最小路径点覆盖即可. #include<cstdio> #include ...
- joyoi1957 「Poetize5」Vani和Cl2捉迷藏
最小路径可重点覆盖.先传递闭包,然后拆点,\(n-\)最大匹配,看算法竞赛进阶指南. #include <iostream> #include <cstring> #inclu ...
- BZOJ-1143&&BZOJ-2718 祭祀river&&毕业旅行 最长反链(Floyed传递闭包+二分图匹配)
蛋蛋安利的双倍经验题 1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1901 Solved: 951 ...
- BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3236 Solved: 1651 [Submit] ...
随机推荐
- 剑指offer——26树的子结构
题目描述 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 题解: 注意,所谓的子结构,是树的形状和值相同,并非判断B是不是A的一部分[如果是这样,那就是 ...
- 剑指offer——15剪绳子
题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...
- 运行mybatis项目,运行测试类,点击test后,出现Cannot start compilation: the output path is not specified for module "前......
Cannot start compilation: the output path is not specified for module "前 后来发现是在pom.xml右击,有个+号,把 ...
- 面试问烂的 MySQL 查询优化,看完屌打面试官!
Java技术栈 ,一般把连接数设置得大一些). 并发量:同一时刻数据库服务器处理的请求数量 3.超高的 CPU使用率:CPU资源耗尽出现宕机. 4.磁盘 IO:磁盘 IO性能突然下降.大量消耗磁盘性能 ...
- python学习4—数据结构之列表、元组与字典
python学习4—数据结构之列表.元组与字典 列表(list)深灰魔法 1. 连续索引 li = [1,1,[1,["asdsa",4]]] li[2][1][1][0] 2. ...
- HttpWebRequest 基础连接已经关闭: 接收时发生错误 GetRequestStream 因为算法不同,客户端和服务器无法通信。
在代码行 HttpWebRequest objRequest = (HttpWebRequest)HttpWebRequest.Create(sUrl 前面加上 ServicePointManager ...
- qt5下面中文显示异常
在源文件中插入# pragma execution_character_set("utf-8")即可
- 实现div里面有placeholder形式
样式中设置content为元素的data-值 p{ color: deepskyblue; } p:before{ content: attr(data-beforeContent); color: ...
- CentOS7的mysql5.7-rpm.bundle方式安装
下载地址 https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.19-1.el6.x86_64.rpm-bundle.tar 查询mariad ...
- SGI STL rope
rope实现的接口可以参考这里. rope是可伸缩的string实现: 它们被设计为用于把string看作一个整体的高效操作 . 比如赋值.串联和子串的操作所花的时间差不多不依赖字符串的长度.与C的字 ...