• 题意:一个图n个点n条边保证点能互相到达,ab有边意味着ab互相厌恶,求一个集合,使得集合里元素最多而且没有人互相厌恶
  • 删去环上一条边树形dp,比如删掉的边连着a,b,那么先dp出不选a的最大值,再dp出不选b的最大值。
  • 如果每次找到环删边的方法是直接把边断掉,这样会出现一个Bug就是a有指向b的边,b有指向a的边,这样形成的环其实不需要删掉
  • 解决办法:就是建边的时候如果是上面的情况a b之间就建了两条边,那这样把重边删去就行了(删完之后就break掉)
  • 代码:
     #include <bits/stdc++.h>
    #define nmax 1000010 using namespace std;
    typedef long long ll;
    vector <int> g[nmax];
    int n, in, a, b, cnt;
    ll d[nmax][]={}; // dp[u][1] = sum dp[v][0] + zl[u] dp[u][0] = sum max(dp[v][0],dp[v][1]+x[v])
    int zl[nmax], vis[nmax]={}; void dfs(int u, int fa){
    d[u][] = zl[u];
    for (int i=; i<g[u].size(); i++) {
    int v = g[u][i];
    if(v==fa || v==) continue;
    dfs(v, u);
    d[u][] += d[v][];
    d[u][] += max(d[v][], d[v][]);
    }
    } void fr(int u, int fa){
    cnt++;
    vis[u] = ;
    for (int i=; i<g[u].size(); i++) {
    int v = g[u][i];
    if(v == fa || v == ) continue;
    if( vis[v] ) { a=u; b=v; }
    else fr(v, u);
    }
    } inline void del(int x, int y){
    for (int i=; i<g[x].size(); i++) if( g[x][i] == y ) { g[x][i] = ; break; }
    } inline void init(int u, int fa){
    d[u][] = d[u][] = ;
    for (int i=; i<g[u].size(); i++) {
    int v = g[u][i];
    if( v==fa || v== ) continue;
    init(v, u);
    }
    } int main(){
    cin >> n;
    for (int i=; i<=n; i++) {
    scanf("%d%d", &zl[i], &in);
    g[in].push_back(i);
    g[i].push_back(in);
    }
    ll ans=, ta;
    for (int i=; i<=n; i++) {
    if(vis[i]) continue;
    cnt = ; //这个树套环的节点个数
    fr(i, );
    del(a, b);
    del(b, a);
    dfs(a, );
    ta = d[a][];
    init(i, );
    dfs(b, );
    ta = max(ta, d[b][] );
    init(i, );
    ans += ta;
    }
    cout << ans << endl;
    return ;
    }

    (⓿_⓿)

BZOJ1040: [ZJOI2008]骑士 树套环DP的更多相关文章

  1. luogu2607/bzoj1040 [ZJOI2008]骑士 (基环树形dp)

    N个点,每个点发出一条边,那么这个图的形状一定是一个基环树森林(如果有重边就会出现森林) 那我做f[0][x]和f[1][x]分别表示对于x子树,x这个点选还是不选所带来的最大价值 然后就变成了这好几 ...

  2. 2018.11.06 bzoj1040: [ZJOI2008]骑士(树形dp)

    传送门 由题可知给出的是基环森林. 因此对于每个基环森林找到环断开dpdpdp两次就行了. 代码: #include<bits/stdc++.h> using namespace std; ...

  3. BZOJ_1040_[ZJOI2008]骑士_树形DP

    BZOJ_1040_[ZJOI2008]骑士_树形DP 题意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪 ...

  4. BZOJ1040: [ZJOI2008]骑士(奇环树,DP)

    题目: 1040: [ZJOI2008]骑士 解析: 假设骑士\(u\)讨厌骑士\(v\),我们在\(u\),\(v\)之间连一条边,这样我们就得到了一个奇环树(奇环森林),既然是一颗奇环树,我们就先 ...

  5. [BZOJ1040][ZJOI2008]骑士(环套树dp)

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5816  Solved: 2263[Submit][Status ...

  6. [bzoj1040][ZJOI2008]骑士_树形dp_基环树_并查集

    骑士 bzoj-1040 ZJOI-2008 题目大意:n个骑士,每个骑士有权值val和一个讨厌的骑士.如果一个骑士讨厌另一个骑士那么他们将不会一起出战.问出战的骑士最大atk是多少. 注释:$1\l ...

  7. 【洛谷】2607: [ZJOI2008]骑士【树形DP】【基环树】

    P2607 [ZJOI2008]骑士 题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一 ...

  8. 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士

    基环外向树dp竟然如此简单…… Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发 ...

  9. 【环套树+树形dp】Bzoj1040 [ZJOI2008] 骑士

    Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火 ...

随机推荐

  1. POP and IMAP - Post Office Protocol and Internet Message Access Protocol

    POP and IMAP - Post Office Protocol and Internet Message Access Protocol 用来从 SMTP Server 上下载邮件的协议. P ...

  2. [Effective Java 读书笔记] 第二章 创建和销毁对象 第六-七条

    第六条 消除过期引用 JAVA中依然会有 memory leak的,比如一个栈先增长再收缩,那么从栈中弹出的对象是不会被当做垃圾回收的,即时使用栈的程序不再引用这些对象.这是因为栈的内部维护着对这些对 ...

  3. geo常见需求

    常见的地理位置相关需求有: 1.查找附近的人 2.显示两点距离 3.点是否在指定范围内(地理围栏) redis.MongoDB.mysql都已支持geo 几种geo方案对比 https://blog. ...

  4. 数据算法 --hadoop/spark数据处理技巧 --(9.基于内容的电影推荐 10. 使用马尔科夫模型的智能邮件营销)

    九.基于内容的电影推荐 在基于内容的推荐系统中,我们得到的关于内容的信息越多,算法就会越复杂(设计的变量更多),不过推荐也会更准确,更合理. 本次基于评分,提供一个3阶段的MR解决方案来实现电影推荐. ...

  5. tomcat 多端口 多容器 多域名 配置

    先强调一个原则: server下面可以有多个service,用于配置不同监听端口 service下面可以有多个Host,用于配置该端口下的不同域名 Host里可以包含多个Context,用于配置该端口 ...

  6. [Redis-CentOS7]Redis字符串操作(二)

    登录Redis # redis-cli 127.0.0.1:6379> 添加字符串 EX 超期时间60s 127.0.0.1:6379> set username 'leoshi' OK ...

  7. 【全集】大数据Java基础

    课程介绍 本课程是由猎豹移动大数据架构师,根据Java在公司大数据开发中的实际应用,精心设计和打磨的大数据必备Java课程.通过本课程的学习大数据新手能够少走弯路,以较短的时间系统掌握大数据开发必备语 ...

  8. 第二篇 Springboot mybatis generate根据数据库表自动生成实体类、Mapper和Mapper.xml

    源码链接:https://pan.baidu.com/s/1iP4UguBufHbcIEv4Ux4wDw 提取码:j6z9 目录结构如下:只需增加一个generatorConfig.xml文件和在po ...

  9. 服务器字体导致NPE

    服务器字体问题 服务器在windows下运行正常. 搬到Linux之后,注册页有个404??? HTTP Status 500 – Internal Server Error Type 异常报告 消息 ...

  10. F12后面的世界(Elements篇)——重识html

    从 淘宝网, 检查元素开始探索之旅. html是什么? hyper text markup language 超文本标记语言,使用标签来描述网页 标签 语义化标签 html5新增标签 什么是超文本? ...