91.requests&BeautifulSoup
转载:https://www.cnblogs.com/wupeiqi/articles/6283017.html
equests
Python标准库中提供了:urllib、urllib2、httplib等模块以供Http请求,但是,它的 API 太渣了。它是为另一个时代、另一个互联网所创建的。它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务。
Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests可以轻而易举的完成浏览器可有的任何操作。
1、GET请求
# 1、无参数实例 import requests ret = requests.get('https://github.com/timeline.json') print ret.url
print ret.text # 2、有参数实例 import requests payload = {'key1': 'value1', 'key2': 'value2'}
ret = requests.get("http://httpbin.org/get", params=payload) print ret.url
print ret.text
2、POST请求
# 1、基本POST实例 import requests payload = {'key1': 'value1', 'key2': 'value2'}
ret = requests.post("http://httpbin.org/post", data=payload) print ret.text # 2、发送请求头和数据实例 import requests
import json url = 'https://api.github.com/some/endpoint'
payload = {'some': 'data'}
headers = {'content-type': 'application/json'} ret = requests.post(url, data=json.dumps(payload), headers=headers) print ret.text
print ret.cookies
3、其他请求
requests.get(url, params=None, **kwargs)
requests.post(url, data=None, json=None, **kwargs)
requests.put(url, data=None, **kwargs)
requests.head(url, **kwargs)
requests.delete(url, **kwargs)
requests.patch(url, data=None, **kwargs)
requests.options(url, **kwargs) # 以上方法均是在此方法的基础上构建
requests.request(method, url, **kwargs)
4、更多参数
def request(method, url, **kwargs):
"""Constructs and sends a :class:`Request <Request>`. :param method: method for the new :class:`Request` object.
:param url: URL for the new :class:`Request` object.
:param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`.
:param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
:param json: (optional) json data to send in the body of the :class:`Request`.
:param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`.
:param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`.
:param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': file-tuple}``) for multipart encoding upload.
``file-tuple`` can be a 2-tuple ``('filename', fileobj)``, 3-tuple ``('filename', fileobj, 'content_type')``
or a 4-tuple ``('filename', fileobj, 'content_type', custom_headers)``, where ``'content-type'`` is a string
defining the content type of the given file and ``custom_headers`` a dict-like object containing additional headers
to add for the file.
:param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.
:param timeout: (optional) How long to wait for the server to send data
before giving up, as a float, or a :ref:`(connect timeout, read
timeout) <timeouts>` tuple.
:type timeout: float or tuple
:param allow_redirects: (optional) Boolean. Set to True if POST/PUT/DELETE redirect following is allowed.
:type allow_redirects: bool
:param proxies: (optional) Dictionary mapping protocol to the URL of the proxy.
:param verify: (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to ``True``.
:param stream: (optional) if ``False``, the response content will be immediately downloaded.
:param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair.
:return: :class:`Response <Response>` object
:rtype: requests.Response Usage:: >>> import requests
>>> req = requests.request('GET', 'http://httpbin.org/get')
<Response [200]>
"""
参数列表
def param_method_url():
# requests.request(method='get', url='http://127.0.0.1:8000/test/')
# requests.request(method='post', url='http://127.0.0.1:8000/test/')
pass def param_param():
# - 可以是字典
# - 可以是字符串
# - 可以是字节(ascii编码以内) # requests.request(method='get',
# url='http://127.0.0.1:8000/test/',
# params={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='get',
# url='http://127.0.0.1:8000/test/',
# params="k1=v1&k2=水电费&k3=v3&k3=vv3") # requests.request(method='get',
# url='http://127.0.0.1:8000/test/',
# params=bytes("k1=v1&k2=k2&k3=v3&k3=vv3", encoding='utf8')) # 错误
# requests.request(method='get',
# url='http://127.0.0.1:8000/test/',
# params=bytes("k1=v1&k2=水电费&k3=v3&k3=vv3", encoding='utf8'))
pass def param_data():
# 可以是字典
# 可以是字符串
# 可以是字节
# 可以是文件对象 # requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# data={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# data="k1=v1; k2=v2; k3=v3; k3=v4"
# ) # requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# data="k1=v1;k2=v2;k3=v3;k3=v4",
# headers={'Content-Type': 'application/x-www-form-urlencoded'}
# ) # requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# data=open('data_file.py', mode='r', encoding='utf-8'), # 文件内容是:k1=v1;k2=v2;k3=v3;k3=v4
# headers={'Content-Type': 'application/x-www-form-urlencoded'}
# )
pass def param_json():
# 将json中对应的数据进行序列化成一个字符串,json.dumps(...)
# 然后发送到服务器端的body中,并且Content-Type是 {'Content-Type': 'application/json'}
requests.request(method='POST',
url='http://127.0.0.1:8000/test/',
json={'k1': 'v1', 'k2': '水电费'}) def param_headers():
# 发送请求头到服务器端
requests.request(method='POST',
url='http://127.0.0.1:8000/test/',
json={'k1': 'v1', 'k2': '水电费'},
headers={'Content-Type': 'application/x-www-form-urlencoded'}
) def param_cookies():
# 发送Cookie到服务器端
requests.request(method='POST',
url='http://127.0.0.1:8000/test/',
data={'k1': 'v1', 'k2': 'v2'},
cookies={'cook1': 'value1'},
)
# 也可以使用CookieJar(字典形式就是在此基础上封装)
from http.cookiejar import CookieJar
from http.cookiejar import Cookie obj = CookieJar()
obj.set_cookie(Cookie(version=0, name='c1', value='v1', port=None, domain='', path='/', secure=False, expires=None,
discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False,
port_specified=False, domain_specified=False, domain_initial_dot=False, path_specified=False)
)
requests.request(method='POST',
url='http://127.0.0.1:8000/test/',
data={'k1': 'v1', 'k2': 'v2'},
cookies=obj) def param_files():
# 发送文件
# file_dict = {
# 'f1': open('readme', 'rb')
# }
# requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# files=file_dict) # 发送文件,定制文件名
# file_dict = {
# 'f1': ('test.txt', open('readme', 'rb'))
# }
# requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# files=file_dict) # 发送文件,定制文件名
# file_dict = {
# 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf")
# }
# requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# files=file_dict) # 发送文件,定制文件名
# file_dict = {
# 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf", 'application/text', {'k1': '0'})
# }
# requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# files=file_dict) pass def param_auth():
from requests.auth import HTTPBasicAuth, HTTPDigestAuth ret = requests.get('https://api.github.com/user', auth=HTTPBasicAuth('wupeiqi', 'sdfasdfasdf'))
print(ret.text) # ret = requests.get('http://192.168.1.1',
# auth=HTTPBasicAuth('admin', 'admin'))
# ret.encoding = 'gbk'
# print(ret.text) # ret = requests.get('http://httpbin.org/digest-auth/auth/user/pass', auth=HTTPDigestAuth('user', 'pass'))
# print(ret)
# def param_timeout():
# ret = requests.get('http://google.com/', timeout=1)
# print(ret) # ret = requests.get('http://google.com/', timeout=(5, 1))
# print(ret)
pass def param_allow_redirects():
ret = requests.get('http://127.0.0.1:8000/test/', allow_redirects=False)
print(ret.text) def param_proxies():
# proxies = {
# "http": "61.172.249.96:80",
# "https": "http://61.185.219.126:3128",
# } # proxies = {'http://10.20.1.128': 'http://10.10.1.10:5323'} # ret = requests.get("http://www.proxy360.cn/Proxy", proxies=proxies)
# print(ret.headers) # from requests.auth import HTTPProxyAuth
#
# proxyDict = {
# 'http': '77.75.105.165',
# 'https': '77.75.105.165'
# }
# auth = HTTPProxyAuth('username', 'mypassword')
#
# r = requests.get("http://www.google.com", proxies=proxyDict, auth=auth)
# print(r.text) pass def param_stream():
ret = requests.get('http://127.0.0.1:8000/test/', stream=True)
print(ret.content)
ret.close() # from contextlib import closing
# with closing(requests.get('http://httpbin.org/get', stream=True)) as r:
# # 在此处理响应。
# for i in r.iter_content():
# print(i) def requests_session():
import requests session = requests.Session() ### 1、首先登陆任何页面,获取cookie i1 = session.get(url="http://dig.chouti.com/help/service") ### 2、用户登陆,携带上一次的cookie,后台对cookie中的 gpsd 进行授权
i2 = session.post(
url="http://dig.chouti.com/login",
data={
'phone': "",
'password': "xxxxxx",
'oneMonth': ""
}
) i3 = session.post(
url="http://dig.chouti.com/link/vote?linksId=8589623",
)
print(i3.text)
参数示例
官方文档:http://cn.python-requests.org/zh_CN/latest/user/quickstart.html#id4
BeautifulSoup
BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。
from bs4 import BeautifulSoup html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
asdf
<div class="title">
<b>The Dormouse's story总共</b>
<h1>f</h1>
</div>
<div class="story">Once upon a time there were three little sisters; and their names were
<a class="sister0" id="link1">Els<span>f</span>ie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</div>
ad<br/>sf
<p class="story">...</p>
</body>
</html>
""" soup = BeautifulSoup(html_doc, features="lxml")
# 找到第一个a标签
tag1 = soup.find(name='a')
# 找到所有的a标签
tag2 = soup.find_all(name='a')
# 找到id=link2的标签
tag3 = soup.select('#link2')
使用示例:
from bs4 import BeautifulSoup html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
...
</body>
</html>
""" soup = BeautifulSoup(html_doc, features="lxml")
import requests
from bs4 import BeautifulSoup
response = requests.get(url = 'https://www.autohome.com.cn/news/')
response.encoding = response.apparent_encoding
# print(response.text)
soup = BeautifulSoup(response.text,features='html.parser')
# soup = BeautifulSoup(response.text,features='lxml')
target = soup.find(id = 'auto-channel-lazyload-article')
li_list = target.find_all('li')
for i in li_list:
a = i.find('a')
if a:
print('https:'+str(a.attrs.get('href')))
print(a.find('h3').text)
print(str('https:'+a.find('img').attrs.get('src')))
# 下载图片
img_url = str('https:'+a.find('img').attrs.get('src'))
img_response = requests.get(url=img_url)
import uuid
file_name = str(uuid.uuid4())+'.jpg'
with open(file_name,'wb') as f:
f.write(img_response.content)
汽车网例子
1. name,标签名称
# tag = soup.find('a')
# name = tag.name # 获取
# print(name)
# tag.name = 'span' # 设置
# print(soup)
2. attr,标签属性
# tag = soup.find('a')
# attrs = tag.attrs # 获取
# print(attrs)
# tag.attrs = {'ik':123} # 设置
# tag.attrs['id'] = 'iiiii' # 设置
# print(soup)
3. children,所有子标签
# body = soup.find('body')
# v = body.children
4. children,所有子子孙孙标签
# body = soup.find('body')
# v = body.descendants
5. clear,将标签的所有子标签全部清空(保留标签名)
# tag = soup.find('body')
# tag.clear()
# print(soup)
6. decompose,递归的删除所有的标签
# body = soup.find('body')
# body.decompose()
# print(soup)
7. extract,递归的删除所有的标签,并获取删除的标签
# body = soup.find('body')
# v = body.extract()
# print(soup)
8. decode,转换为字符串(含当前标签);decode_contents(不含当前标签)
# body = soup.find('body')
# v = body.decode()
# v = body.decode_contents()
# print(v)
9. encode,转换为字节(含当前标签);encode_contents(不含当前标签)
# body = soup.find('body')
# v = body.encode()
# v = body.encode_contents()
# print(v)
10. find,获取匹配的第一个标签
# tag = soup.find('a')
# print(tag)
# tag = soup.find(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')
# tag = soup.find(name='a', class_='sister', recursive=True, text='Lacie')
# print(tag)
11. find_all,获取匹配的所有标签
# tags = soup.find_all('a')
# print(tags) # tags = soup.find_all('a',limit=1)
# print(tags) # tags = soup.find_all(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')
# # tags = soup.find(name='a', class_='sister', recursive=True, text='Lacie')
# print(tags) # ####### 列表 #######
# v = soup.find_all(name=['a','div'])
# print(v) # v = soup.find_all(class_=['sister0', 'sister'])
# print(v) # v = soup.find_all(text=['Tillie'])
# print(v, type(v[0])) # v = soup.find_all(id=['link1','link2'])
# print(v) # v = soup.find_all(href=['link1','link2'])
# print(v) # ####### 正则 #######
import re
# rep = re.compile('p')
# rep = re.compile('^p')
# v = soup.find_all(name=rep)
# print(v) # rep = re.compile('sister.*')
# v = soup.find_all(class_=rep)
# print(v) # rep = re.compile('http://www.oldboy.com/static/.*')
# v = soup.find_all(href=rep)
# print(v) # ####### 方法筛选 #######
# def func(tag):
# return tag.has_attr('class') and tag.has_attr('id')
# v = soup.find_all(name=func)
# print(v) # ## get,获取标签属性
# tag = soup.find('a')
# v = tag.get('id')
# print(v)
12. has_attr,检查标签是否具有该属性
# tag = soup.find('a')
# v = tag.has_attr('id')
# print(v)
13. get_text,获取标签内部文本内容
# tag = soup.find('a')
# v = tag.get_text('id')
# print(v)
14. index,检查标签在某标签中的索引位置
# tag = soup.find('body')
# v = tag.index(tag.find('div'))
# print(v) # tag = soup.find('body')
# for i,v in enumerate(tag):
# print(i,v)
15. is_empty_element,是否是空标签(是否可以是空)或者自闭合标签,
判断是否是如下标签:'br' , 'hr', 'input', 'img', 'meta','spacer', 'link', 'frame', 'base'
# tag = soup.find('br')
# v = tag.is_empty_element
# print(v)
16. 当前的关联标签
# soup.next
# soup.next_element
# soup.next_elements
# soup.next_sibling
# soup.next_siblings #
# tag.previous
# tag.previous_element
# tag.previous_elements
# tag.previous_sibling
# tag.previous_siblings #
# tag.parent
# tag.parents
17. 查找某标签的关联标签
# tag.find_next(...)
# tag.find_all_next(...)
# tag.find_next_sibling(...)
# tag.find_next_siblings(...) # tag.find_previous(...)
# tag.find_all_previous(...)
# tag.find_previous_sibling(...)
# tag.find_previous_siblings(...) # tag.find_parent(...)
# tag.find_parents(...) # 参数同find_all
18. select,select_one, CSS选择器
soup.select("title") soup.select("p nth-of-type(3)") soup.select("body a") soup.select("html head title") tag = soup.select("span,a") soup.select("head > title") soup.select("p > a") soup.select("p > a:nth-of-type(2)") soup.select("p > #link1") soup.select("body > a") soup.select("#link1 ~ .sister") soup.select("#link1 + .sister") soup.select(".sister") soup.select("[class~=sister]") soup.select("#link1") soup.select("a#link2") soup.select('a[href]') soup.select('a[href="http://example.com/elsie"]') soup.select('a[href^="http://example.com/"]') soup.select('a[href$="tillie"]') soup.select('a[href*=".com/el"]') from bs4.element import Tag def default_candidate_generator(tag):
for child in tag.descendants:
if not isinstance(child, Tag):
continue
if not child.has_attr('href'):
continue
yield child tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator)
print(type(tags), tags) from bs4.element import Tag
def default_candidate_generator(tag):
for child in tag.descendants:
if not isinstance(child, Tag):
continue
if not child.has_attr('href'):
continue
yield child tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator, limit=1)
print(type(tags), tags)
19. 标签的内容
# tag = soup.find('span')
# print(tag.string) # 获取
# tag.string = 'new content' # 设置
# print(soup) # tag = soup.find('body')
# print(tag.string)
# tag.string = 'xxx'
# print(soup) # tag = soup.find('body')
# v = tag.stripped_strings # 递归内部获取所有标签的文本
# print(v)
20.append在当前标签内部追加一个标签
# tag = soup.find('body')
# tag.append(soup.find('a'))
# print(soup)
#
# from bs4.element import Tag
# obj = Tag(name='i',attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('body')
# tag.append(obj)
# print(soup)
21.insert在当前标签内部指定位置插入一个标签
# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('body')
# tag.insert(2, obj)
# print(soup)
22. insert_after,insert_before 在当前标签后面或前面插入
# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('body')
# # tag.insert_before(obj)
# tag.insert_after(obj)
# print(soup)
23. replace_with 在当前标签替换为指定标签
# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('div')
# tag.replace_with(obj)
# print(soup)
24. 创建标签之间的关系
# tag = soup.find('div')
# a = soup.find('a')
# tag.setup(previous_sibling=a)
# print(tag.previous_sibling)
25. wrap,将指定标签把当前标签包裹起来
# from bs4.element import Tag
# obj1 = Tag(name='div', attrs={'id': 'it'})
# obj1.string = '我是一个新来的'
#
# tag = soup.find('a')
# v = tag.wrap(obj1)
# print(soup) # tag = soup.find('a')
# v = tag.wrap(soup.find('p'))
# print(soup)
26. unwrap,去掉当前标签,将保留其包裹的标签
# tag = soup.find('a')
# v = tag.unwrap()
# print(soup)
更多参数官方:http://beautifulsoup.readthedocs.io/zh_CN/v4.4.0/
91.requests&BeautifulSoup的更多相关文章
- python 爬虫(一) requests+BeautifulSoup 爬取简单网页代码示例
以前搞偷偷摸摸的事,不对,是搞爬虫都是用urllib,不过真的是很麻烦,下面就使用requests + BeautifulSoup 爬爬简单的网页. 详细介绍都在代码中注释了,大家可以参阅. # -* ...
- 猫眼电影爬取(二):requests+beautifulsoup,并将数据存储到mysql数据库
上一篇通过requests+正则爬取了猫眼电影榜单,这次通过requests+beautifulsoup再爬取一次(其实这个网站更适合使用beautifulsoup库爬取) 1.先分析网页源码 可以看 ...
- 使用python抓取并分析数据—链家网(requests+BeautifulSoup)(转)
本篇文章是使用python抓取数据的第一篇,使用requests+BeautifulSoup的方法对页面进行抓取和数据提取.通过使用requests库对链家网二手房列表页进行抓取,通过Beautifu ...
- Python Download Image (python + requests + BeautifulSoup)
环境准备 1 python + requests + BeautifulSoup 页面准备 主页面: http://www.netbian.com/dongman/ 图片伪地址: http://www ...
- 【Python】在Pycharm中安装爬虫库requests , BeautifulSoup , lxml 的解决方法
BeautifulSoup在学习Python过程中可能需要用到一些爬虫库 例如:requests BeautifulSoup和lxml库 前面的两个库,用Pychram都可以通过 File--> ...
- 利用requests, beautifulsoup包爬取股票信息网站
这是第一次用requests, beautifulsoup实现爬虫,此次爬取的是一个股票信息网站:http://www.gupiaozhishi.net.cn. 实现非常简单,只是为了demo使用的数 ...
- Python 爬虫—— requests BeautifulSoup
本文记录下用来爬虫主要使用的两个库.第一个是requests,用这个库能很方便的下载网页,不用标准库里面各种urllib:第二个BeautifulSoup用来解析网页,不然自己用正则的话很烦. req ...
- 爬虫之Requests&beautifulsoup
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本.另外一些不常使用的名字还有蚂蚁.自动索引.模拟程序或者蠕 ...
- 使用requests+BeautifulSoup爬取龙族V小说
这几天想看龙族最新版本,但是搜索半天发现 没有网站提供 下载, 我又只想下载后离线阅读(写代码已经很费眼睛了).无奈只有自己 爬取了. 这里记录一下,以后想看时,直接运行脚本 下载小说. 这里是从 ...
随机推荐
- 非阻塞模式下,虽然connect出错,但是getsockopt取得的错误却是0的问题
调试项目代码时,发现了一个奇怪问题,记录如下: 非阻塞模式下,connect发起建链,返回-1(这在非阻塞模式下是很正常的现象).然后将该socket的写事件进行监听,在写事件触发后,getsocko ...
- 【NS2】NS2中802.11代码深入理解—packet传输的流程(转载)
如何传送一个封包(How to transmit a packet?)首先,我们要看的第一个function是在mac-802_11.cc内的recv( ),程式会先判断目前呼叫recv( )这个pa ...
- POJ2663 Tri Tiling
思路: 设a[i]为N=i时的方法数.i为奇数的时候肯定为0. 如果i为偶数,a[i]可以看成a[i-2]加上两个单位组成的,此时多出来的2单位有3种方法. 也可以看成a[i-4]加上四个单位组成的, ...
- js常见运算符
博客地址 :https://www.cnblogs.com/sandraryan/
- element表格多选实现单选
9.element多选表格实现单选 userChoose(selection, row) { console.log(selection,'selection') console.log(row,'r ...
- Android Studio(三):设置Android Studio编码
Android Studio相关博客: Android Studio(一):介绍.安装.配置 Android Studio(二):快捷键设置.插件安装 Android Studio(三):设置Andr ...
- [kuangbin带你飞]专题九 连通图B - Network UVA - 315
判断割点的性质: 如果点y满足 low[y]>=dfn[x] 且不是根节点 或者是根节点,满足上述式子的有两个及其以上. 就是割点 如果是起点,那么至少需要两个子节点满足上述条件,因为它是根节点 ...
- oracle用索引提高效率
索引是表的一个概念部分,用来提高检索数据的效率. 实际上,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最 ...
- Google Colab使用教程
简介Google Colaboratory是谷歌开放的云服务平台,提供免费的CPU.GPU和TPU服务器. 目前深度学习在图像和文本上的应用越来越多,不断有新的模型.新的算法获得更好的效果,然而,一方 ...
- wpf 登录时显示状态动态图
下面的示例演示了如何在登录过程时,界面上显示状态图标,登录完成后隐藏图标: public partial class MainWindow : Window { public MainWindow() ...