Python2 生成器 简介
1.
A generator: provide a kind of function that can return an intermediate result ("the next value") to its caller, but maintaining the function's local state so that the function can be resumed again right where it left off.
A very simple example:
def fib():
a, b = 0, 1
while 1:
yield b
a, b = b, a+b
When fib() is first invoked, it sets a to 0 and b to 1, then yields b back to its caller. The caller sees 1. When fib is resumed, from its point of view the yield statement is really the same as, say, a print statement: fib continues after the yield with all local state intact. a and b then become 1 and 1, and fib loops back to the yield, yielding 1 to its invoker. And so on. From fib's point of view it's just delivering a sequence of results. But from its caller's point of view, the fib invocation is an iterable object that can be resumed at will.
The yield statement may only be used inside functions. A function that contains a yield statement is called a generator function.
When a generator function is called, the actual arguments are bound to function-local formal argument names in the usual way, but no code in the body of the function is executed. Instead a generator-iterator object is returned; this conforms to the iterator protocol, so in particular can be used in for-loops in a natural way.
Each time the .next() method of a generator-iterator is invoked, the code in the body of the generator-function is executed until a yield or return statement (see below) is encountered, or until the end of the body is reached.
If a yield statement is encountered, the state of the function is frozen, and the value of expression_list is returned to .next()'s caller. By "frozen" we mean that all local state is retained, including the current bindings of local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next time .next() is invoked, the function can proceed exactly as if the yield statement were just another external call.
Note that an expression_list is not allowed on return statements in the body of a generator.
When a return statement is encountered, control proceeds as in any function return, executing the appropriate finally clauses (if any exist). Then a StopIteration exception is raised, signalling that the iterator is exhausted. A StopIteration exception is also raised if control flows off the end of the generator without an explicit return.
2: send
A new method for generator-iterators is proposed, called send(). It takes exactly one argument, which is the value that should be sent in to the generator. Calling send(None) is exactly equivalent to calling a generator's next() method. Calling send() with any other value is the same, except that the value produced by the generator's current yield expression will be different.
Because generator-iterators begin execution at the top of the generator's function body, there is no yield expression to receive a value when the generator has just been created. Therefore, calling send() with a non-None argument is prohibited when the generator iterator has just started, and a TypeError is raised if this occurs (presumably due to a logic error of some kind). Thus, before you can communicate with a coroutine you must first call next() or send(None) to advance its execution to the first yield expression.
The yield-statement will be allowed to be used on the right-hand side of an assignment; in that case it is referred to as yield-expression. The value of this yield-expression is None unless send() was called with a non-None argument; see below.
Note that a yield-statement or yield-expression without an expression is now legal. This makes sense: when the information flow in the next() call is reversed, it should be possible to yield without passing an explicit value (yield is of course equivalent to yield None).
When send(value) is called, the yield-expression that it resumes will return the passed-in value. When next() is called, the resumed yield-expression will return None. If the yield-expression is a yield-statement, this returned value is ignored, similar to ignoring the value returned by a function call used as a statement.
3: Exceptions and Cleanup
throw(type, value=None, traceback=None)
g.throw(type, value, traceback) causes the specified exception to be thrown at the point where the generator g is currently suspended (i.e. at a yield-statement, or at the start of its function body if next() has not been called yet). If the generator catches the exception and yields another value, that is the return value of g.throw(). If it doesn't catch the exception, the throw() appears to raise the same exception passed it (it falls through). If the generator raises another exception (this includes the StopIteration produced when it returns) that exception is raised by the throw() call. In summary, throw() behaves like next() or send(), except it raises an exception at the suspension point. If the generator is already in the closed state, throw() just raises the exception it was passed without executing any of the generator's code.
The effect of raising the exception is exactly as if the statement: raise type, value, traceback
was executed at the suspension point. The type argument must not be None, and the type and value must be compatible.
g.close() is defined by the following pseudo-code:
def close(self):
try:
self.throw(GeneratorExit)
except (GeneratorExit, StopIteration):
pass
else:
raise RuntimeError("generator ignored GeneratorExit")
# Other exceptions are not caught
https://www.python.org/dev/peps/pep-0342/
https://www.python.org/dev/peps/pep-0255/
Python2 生成器 简介的更多相关文章
- Python3.x:生成器简介
Python3.x:生成器简介 概念 任何使用yield的函数都称之为生成器:使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调 ...
- 【翻译】ES6生成器简介
原文地址:http://davidwalsh.name/es6-generators ES6生成器全部文章: The Basics Of ES6 Generators Diving Deeper Wi ...
- Python基础之生成器
1.生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比 ...
- c#分布式ID生成器
c#分布式ID生成器 简介 这个是根据twitter的snowflake来写的.这里有中文的介绍. 如上图所示,一个64位ID,除了最左边的符号位不用(固定为0,以保证生成的ID都是正数),还剩余 ...
- python学习日记(迭代器、生成器)-乱七八糟
迭代器 迭代是Python最强大的功能之一,是访问集合元素的一种方式. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退 ...
- 【awesome-dotnet-core-learning】(3)-Bogus-假数据生成器
[awesome-dotnet-core-learning](3)-Bogus-假数据生成器 简介 Bogus一个简单而强大的假数据生成器,用于C#,F#和VB.NET.从著名的faker.js移植过 ...
- 【scikit-learn】06:make_blobs聚类数据生成器
版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/kevinelstri/article/ ...
- PythonI/O进阶学习笔记_9.python的生成器
content: 1. 什么是生成器 2. 生成器的实现 3. 生成器的应用 一.生成器简介 1.什么是生成器 在 Python 中,使用了 yield 的函数被称为生成器(genera ...
- 生成器和迭代器_python
一.生成器简介(generator) 在进行较大数据的存储,如果直接存储在列表之中,则会可能造成内存的不够与速度的减慢,因为列表创建完是立即创建并存在的,而在python中生成器(generator) ...
随机推荐
- BottomNavigationView(底部导航)
BottomNavigationView 很早之前就在 Material Design 中出现了,但是直到 Android Support Library 25 中才增加了 BottomNavigat ...
- 装配SpringBean(六)--配置文件加载方式
spring中的配置文件有两种: 以XML结尾的spring配置文件 以properties结尾的属性配置文件 在spring中有两种方式加载这两种文件: 通过注解+java配置的方式 通过XML的方 ...
- 前端算法题:找出数组中第k大的数字出现多少次
题目:给定一个一维数组,如[1,2,4,4,3,5],找出数组中第k大的数字出现多少次. 例如:第2大的数是4,出现2次,最后输出 4,2 function getNum(arr, k){ // 数组 ...
- Hibernate-概述-搭建-测试-配置详解
一 hibernate概述 1.1 框架是什么 1.框架是用来提高开发效率的 2.封装了好了一些功能.我们需要使用这些功能时,调用即可.不需要再手动实现. 3.所以框架可以理解成是一个半成品的项目.只 ...
- UVA11722 Jonining with Friend
Joining with Friend You are going from Dhaka to Chittagong by train and you came to know one of your ...
- char类型和int类型之间的转换
在视屏课程第二章里,我们已经学习了一些常用的数据类型转换.然而,有一些时候我们会经常会遇到将char类型转换成int类型,或者需要将int类型转换为char类型的情况. 这里,我们来探讨一下这种不常用 ...
- url映射 ccf (Java正则表达式80分解法)
问题描述 试题编号: 201803-3 试题名称: URL映射 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 URL 映射是诸如 Django.Ruby on Rails 等 ...
- oracle定制定时执行任务
1.引言 定制定时执行的任务有两种形式,系统级别和数据库级别, 从操作系统级别来讲, windows系统我们可以使用任务计划来实现, 对于winXP系统,设置步骤如下,开始---设置---控制面板-- ...
- LINUX访问文件配置
访问文件 /etc/host.conf 告诉网络域名服务器如何查找主机名.(通常是 /etc/hosts,然后就是名称服务器:可通过 netconf 对其进行更改) /etc/hosts 包含(本地网 ...
- oracle触发器级联删除
create or replace trigger delete_trigger1 after delete on contracting_party for each row begin if de ...