推荐中的多任务学习-YouTube视频推荐
本文将介绍Google发表在RecSys’19 的论文《Recommending What Video to Watch Next: A Multitask Ranking System》。主要解决大规模视频推荐中的排序阶段的多任务学习和用户选偏置问题。
- 背景
给定当前用户正在观看的视频,推荐给用户下一个可能观看或者喜欢的视频。在实际推荐场景中的两个主要问题:
1)多目标:我们不仅希望推荐的视频用户会点击,而且希望用户会给好评并分享给朋友观看
2)选择偏置:用户点击视频可能因为该视频在页面的顶部,并不是用户真的喜欢。如果不考虑这种偏置,推荐系统会误以为用户喜欢这种类型视频,导致恶性循环。
为了解决这些问题,文章提出使用Multi-gate Mixture-of-Experts (MMoE)进行多任务学习,并对Wide&deep做出了扩展,引入一个浅层台模型消除选择偏置。MMoE是多任务学习的一种架构,核心思想是对每个学习任务将底部共享层替换为MoE层并加上门控网络,也是由google提出的,可以参考下原论文[2]。
- 模型架构
总体架构如图
MMoE部分主要用于解决多目标学习,具体来说,文章将多目标分成两组:1)参与度目标,例如点击、观看时长等;2)满意度目标,用户评分等。每个expert关注输入的不同部分,利用多门控机制可以控制expert的权重。
shallow tower部分用于减少选择偏置的影响,将和偏置有关的特征作为输入。该部分类似于wide&deep的wide部分,输出作为主模型的偏置。
1.建模任务间联系和冲突
当任务间的关联比较低时,使用硬参数的底层共享模型很多进行多目标学习,为了解决这个问题,文章使用基于软参数的MMoE进行学习,让多个任务共享这些“专家”,也可以用门控网络来协调不同“专家“所起的作用。下图是提出的多任务模型
一般来说,在输入层或者隐含层之上增加”专家“层,最终可以更好地对多模态的特征空间进行建模。但是直接加在输入层之上,会增加模型训练代价(因为输入层维度相比隐含层包含更多的参数),因此文章采用”专家“层加在隐含层之上的方法。
对给定的任务\(k\),
\[
\begin{aligned}y_{k} &=h^{k}\left(f^{k}(x)\right) \\\text { where } f^{k}(x) &=\sum_{i=1}^{n} g_{(i)}^{k}(x) f_{i}(x)\end{aligned}
\]
对应的门控
\[
g^{k}(x)=\operatorname{softmax}\left(W_{g^{k}} x\right)
\]
2.偏置消除
关于选择偏置问题,本文开头已经介绍了,通常用户倾向于点击显示在页面前面的视频。模型的输入被分为两部分,主塔部分输入为主要的特征信息,浅层塔输入为和偏置有关的信息。
训练过程,浏览时的位置作为输入特征的一部分,设置drop-out,避免过度依赖位置特征。serving时,位置特征设为missing。将设备信息会被加入到shallow tower的输入中,是因为不同设备上不同位置的bias是不同的。
- discussion
具体的实验部分可以看原论文,另外论文也提出了一些在实践中需要考虑的问题。如
1.多模态特征空间
2.可扩展性
3.效果与效率的折衷
4.模型压缩等
references:
[1] Recommending What Video to Watch Next- A Multitask Ranking System
[2] Modeling task relationships in multi-task learning with multi-gate mixture-of- experts
推荐中的多任务学习-YouTube视频推荐的更多相关文章
- 推荐中的多任务学习-ESMM
本文将介绍阿里发表在 SIGIR'18 的论文ESMM<Entire Space Multi-Task Model: An Effective Approach for Estimating Po ...
- 大学MOOC课程视频下载、流文件合并、批量重命名、b站视频下载及学习课程视频推荐
计算机行业技术更新快,编程语言种类多,在当今大数据和人工智能的时代,为了能在相关领域有所成就,就必须掌握好python.R等语言,较好的数学基础和深入的行业背景知识.计算机从业人员务必践行" ...
- 深度召回模型在QQ看点推荐中的应用实践
本文由云+社区发表 作者:腾讯技术工程 导语:最近几年来,深度学习在推荐系统领域中取得了不少成果,相比传统的推荐方法,深度学习有着自己独到的优势.我们团队在QQ看点的图文推荐中也尝试了一些深度学习方法 ...
- Mac 软件专题:高效率工作和学习工具软件推荐
今天和大家分享软件专题:「高效率工作和学习工具」,简而言之就是提高你工作和学习效率的软件,这对于要天天使用Mac工作或学习的人来说太有帮助了,这里主要分享大家平时经常用的一些,欢迎留言补充. 本文图片 ...
- [DeeplearningAI笔记]ML strategy_2_3迁移学习/多任务学习
机器学习策略-多任务学习 Learninig from multiple tasks 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.7 迁移学习 Transfer Learninig 神 ...
- 【论文笔记】多任务学习(Multi-Task Learning)
1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法.在机器学习领域,标准的算法理论是一次学习一个任务,也就 ...
- 多任务学习Multi-task-learning MTL
https://blog.csdn.net/chanbo8205/article/details/84170813 多任务学习(Multitask learning)是迁移学习算法的一种,迁移学习可理 ...
- [译]深度神经网络的多任务学习概览(An Overview of Multi-task Learning in Deep Neural Networks)
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我 ...
- 多任务学习(MTL)在转化率预估上的应用
今天主要和大家聊聊多任务学习在转化率预估上的应用. 多任务学习(Multi-task learning,MTL)是机器学习中的一个重要领域,其目标是利用多个学习任务中所包含的有用信息来帮助每个任务学习 ...
随机推荐
- 【codeforces 520C】DNA Alignment
[题目链接]:http://codeforces.com/contest/520/problem/C [题意] 给你一个函数; 它的作用是评估两个字符串的相似程度; 评估的时候: 保持一个字符串不动, ...
- 洛谷P3150 pb的游戏(1)题解 博弈论入门
题目链接:https://www.luogu.org/problem/P3150 这道题目是博弈论的入门题. 我们以 必胜态 和 必败态 来讲解这个问题. 首先,下面的图片演示了前8个数的必胜态和必败 ...
- Eclipse设置默认编码为UTF-8
需要设置的几处地方为: Window->Preferences->General ->Content Type->Text->JSP 最下面设置为UTF-8 Window ...
- mac 安装 adb
安装命令 brew cask install android-platform-tools 测试安装情况 adb devices 设备打开开发者模式 略 查看log并过滤出设备id adb logca ...
- H3C 单路径网络中环路产生过程(3)
- node第一个参数必须是err
Node.js 约定回调函数第一个参数必须是错误对象err: 问题:Node.js约定回调函数第一个参数必须是错误对象err,如果没有错误该参数就是null 原因:异步执行分成两段,在两段之间抛出异常 ...
- C# 在基类定义好方法让子类继承接口就能实现
在 C# 里面,接口的定义只需要类里面存在和接口声明相同的方法或属性就可以,而存在的方法或属性是在子类定义的还是基类里面定义的都无所谓.也就是在基类里面写好了方法,但不继承接口,等子类继承接口的时候就 ...
- 用webAudio和canvas实现音频可视化
前两天遇到了要显示音频波形图的需求,因为时间紧,就直接用了wavesufer.js,这两天有空,就研究了一下怎么用webAudio实现音频的可视化. 大致流程是对音源进行解析,解析得到的数据是个频谱数 ...
- AutoHotKey 用打码的快捷键
本文告诉大家如何使用 AutoHotKey 将 - 键默认输入的时候是下划线,因为使用下划线在写代码的时候是用在私有字段,而 - 很少使用 我打码经常需要使用下划线_而下划线需要按shift+- 两个 ...
- GitHub上传项目到远程库
写文章 GitHub上传项目到远程库 GitHub上传项目到远程库 今天把想把文件托管到GitHub仓库,但是执行一系列的命令以后,刷新GitHub网站还是没有任何更新.后来终于找到原因,原来 ...