题目链接:https://www.luogu.com.cn/problem/P1028

题目描述

我们要求找出具有下列性质数的个数(包含输入的自然数 \(n\) ):

先输入一个自然数 \(n(n \le 1000)\) ,然后对此自然数按照如下方法进行处理:

  1. 不作任何处理;
  2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半;
  3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止.

输入格式

1个自然数 \(n(n \le 1000)\)

输出格式

1个整数,表示具有该性质数的个数。

问题分析

我们可以使用 动态规划 来解决这个问题。

我们令 \(f[i]\) 表示自然数 \(i\) 能够生成的数的个数,则:

\(f[i] = 1 + \sum_{j=1}^{n/2} f[j]\)

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1010;
int n, f[maxn];
int main() {
cin >> n;
for (int i = 1; i <= n; i ++) {
f[i] = 1;
for (int j = 1; j <= i/2; j ++)
f[i] += f[j];
}
cout << f[n] << endl;
return 0;
}

总结:这是一道动态规划入门题,可以用递推、递归做(不过递归做的时候不要忘了开备忘录)。

洛谷P1028 数的计算 题解 动态规划入门题的更多相关文章

  1. 洛谷 P1028 数的计算【递推】

    P1028 数的计算 题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1.不作任何处理; 2.在它 ...

  2. 洛谷P1028.数的计算(动态规划)

    题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n≤1000),然后对此自然数按照如下方法进行处理: 1.不作任何处理; 2.在它的左边加上一个自然数,但该自然 ...

  3. 洛谷 P1028 数的计算

    嗯... 首先这道题想到的就是递推.... 但是递推失败 (不知道自己是怎么想的 然后又想打一个暴力,但是数的最高位太难存储了,所以又放弃了(并且好像这个暴力大约500就会炸... 然后看了题解,才发 ...

  4. 洛谷P1028数的计算

    https://www.luogu.org/problemnew/show/P1028 只用递归会超时,需要用递归型动规,用一个数组保存已经算过的值,避免重复计算. 求数字为n的方案数的最优子结构为: ...

  5. 洛谷--P1028 数的计算(递推)

    题意:链接:https://www.luogu.org/problem/P1028 先输入一个自然数n (n≤1000) , 然后对此自然数按照如下方法进行处理: 不作任何处理; 在它的左边加上一个自 ...

  6. (递推)codeVs1011 && 洛谷P1028 数的计算

    题目描述 Description 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1.          不 ...

  7. 洛谷P1028 数的计算

    https://www.luogu.org/problem/P1028 #include<cstdio> using namespace std; int main(){ ,i,f[]; ...

  8. (Java实现) 洛谷 P1028 数的计算

    题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数nn): 先输入一个自然数n(n≤1000),然后对此自然数按照如下方法进行处理: 不作任何处理; 在它的左边加上一个自然数,但该自然数不能 ...

  9. Java实现 洛谷 P1028 数的计算

    import java.util.Scanner; import java.util.Arrays; public class Main { private static Scanner cin; p ...

随机推荐

  1. Freeware Tools For Linux, http://www.debianhelp.co.uk/tools.htm

    Freeware Tools For Linux, http://www.debianhelp.co.uk/tools.htm Freeware Tools For Linux DNS related ...

  2. hdu 2662 Coin

    Coin Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  3. behavior planning——10 behaior planning pseudocode

    One way to implement a transition function is by generating rough trajectories for each accessible & ...

  4. Python:pip 和pip3的区别

    前言 装完python3后发现库里面既有pip也有pip3,不知道它们的区别,因此特意去了解了一下. 解释 先搜索了一下看到了如下的解释, 安装了python3之后,库里面既会有pip3也会有pip ...

  5. POJ2406 Power Strings 题解 KMP算法

    题目链接:http://poj.org/problem?id=2406 题目大意:给你一个字符串 \(t\) ,\(t\) 可以表示为另一个小字符串循环了 \(K\) 了,求最大的循环次数 \(K\) ...

  6. hdu 3374 String Problem (字符串最小最大表示 + KMP求循环节)

    Problem - 3374   KMP求循环节. http://www.cnblogs.com/wuyiqi/archive/2012/01/06/2314078.html   循环节推导的证明相当 ...

  7. 2019-9-9-dotnet-获取本机-IP-地址方法

    title author date CreateTime categories dotnet 获取本机 IP 地址方法 lindexi 2019-09-09 15:56:33 +0800 2019-0 ...

  8. 如何查看python的当前版本号

    每次打开python顶端会显示版本号 在程序中判断版本号可以通过import sys  sys.version 在dos下可以通过python -V查看

  9. 脑残的设计--- 视图(view)里面包含order by

    2015/05/26 更新 今天又遇到了类似问题...尼玛无语了 编码规范啊 !!! 今天有个兄弟跟我说sql跑得太慢了,让我看看.sql如下: SELECT rownum row_num, pv.v ...

  10. 《Spring 5官方文档》 Spring AOP的经典用法

    原文链接 在本附录中,我们会讨论一些初级的Spring AOP接口,以及在Spring 1.2应用中所使用的AOP支持. 对于新的应用,我们推荐使用 Spring AOP 2.0来支持,在AOP章节有 ...