我们以微博树洞为例,讲解了怎么自动爬取单个微博的评论。今天我们就要用上这些数据做一个自杀倾向分类器,这样的分类器如果应用得当,将可以帮助成千上万误入歧途的人们挽回生命。

为了简化问题,我们将短文本分为两种类别中的一种,即要么是正常微博、要么是自杀倾向微博。这样,有了上次的微博树洞,训练集和测试集就非常好获得了。由于是短文本二分类问题,可以使用 scikit-learn 的 SVM 分类模型。

不过要注意的是,我们的分类器并不能保证分类出来的结果百分百正确,毕竟心理状态是很难通过文本准确识别出来的,我们只能通过文字,大致判断其抑郁情况并加以介入。实际上这是一个宁可错杀一百,不可放过一个的问题。毕竟放过一个,可能就有一条生命悄然流逝。

本文源代码: https://github.com/Ckend/suicide-detect-sv... 欢迎一同改进这个项目,在训练集和模型方面,改进的空间还相当大。
PS:另外很多人在学习Python的过程中,往往因为遇问题解决不了或者没好的教程从而导致自己放弃,为此我建了个Python全栈开发交流.裙 :一久武其而而流一思(数字的谐音)转换下可以找到了,里面有最新Python教程项目可拿,不懂的问题有老司机解决哦,一起相互监督共同进步

1. 数据准备

数据集整体上分两个部分,一部分是训练集、一部分是测试集。其中,训练集和测试集中还要分为正常微博短文本和自杀倾向短文本。

将上一篇爬取微博树洞的文章中得到的数据进行人工筛选后,挑出 300 条作为训练集(有点少,其实业界至少也要 3000 条以上),再根据上次的微博爬虫随意爬取 10000 条微博作为训练集的正常微博类。另外再分别搜集自杀倾向微博和普通微博各 50 条作为测试集。

每条微博按行存储在 txt 文件里。训练集中,正常微博命名为 normal.txt, 自杀倾向微博命名为 die.txt。测试集存放在后缀为_test.txt 的文件中:

 

此外,接下来我们会使用到一个机器学习工具包叫 scikit-learn (sklearn),其打包好了许多机器学习模型和预处理的方法,方便我们构建分类器,在 CMD/Terminal 输入以下命令安装:

pip install -U scikit-learn

如果你还没有安装 Python,请看这篇文章安装 Python,然后再执行上述命令安装 sklearn.

 

2. 数据预处理

我们使用一个典型的中文自然语言预处理方法:对文本使用结巴分词后将其数字化。

由于具有自杀倾向的微博中,其实类似于 "死"、"不想活"、"我走了" 等这样的词语比较常见,因此我们可以用 TF-IDF 将字符串数字化。如果你不了解 TF-IDF,请看这篇文章: 文本处理之 tf-idf 算法及其实践

数字化的部分代码如下。

print('(2) doc to var...')
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer # CountVectorizer考虑每种词汇在该训练文本中出现的频率,得到计数矩阵
count_v0= CountVectorizer(analyzer='word',token_pattern='\w{1,}')
counts_all = count_v0.fit_transform(all_text) count_v1= CountVectorizer(vocabulary=count_v0.vocabulary_)
counts_train = count_v1.fit_transform(train_texts)
print("the shape of train is "+repr(counts_train.shape) )
count_v2 = CountVectorizer(vocabulary=count_v0.vocabulary_)
counts_test = count_v2.fit_transform(test_texts)
print("the shape of test is "+repr(counts_test.shape) ) # 保存数字化后的词典
joblib.dump(count_v0.vocabulary_, "model/die_svm_20191110_vocab.m") counts_all = count_v2.fit_transform(all_text)
print("the shape of all is "+repr(counts_all.shape)) # 将计数矩阵转换为规格化的tf-idf格式
tfidftransformer = TfidfTransformer()
train_data = tfidftransformer.fit(counts_train).transform(counts_train)
test_data = tfidftransformer.fit(counts_test).transform(counts_test)
all_data = tfidftransformer.fit(counts_all).transform(counts_all)
 

3. 训练

使用 scikit-learn 的 SVM 分类模型,我们能很快滴训练并构建出一个分类器:

print('(3) SVM...')
from sklearn.svm import SVC # 使用线性核函数的SVM分类器,并启用概率估计(分别显示分到两个类别的概率如:[0.12983359 0.87016641])
svclf = SVC(kernel = 'linear', probability=True) # 开始训练
svclf.fit(x_train,y_train)
# 保存模型
joblib.dump(svclf, "model/die_svm_20191110.m")

这里我们忽略了 SVM 原理的讲述,SVM 的原理可以参考这篇文章:支持向量机(SVM)—— 原理篇

 

4. 测试

测试的时候,我们要分别计算模型对两个类别的分类精确率和召回率。scikit-learn 提供了一个非常好用的函数 classification_report 来计算它们:

# 测试集进行测试
preds = svclf.predict(x_test)
y_preds = svclf.predict_proba(x_test) preds = preds.tolist()
for i,pred in enumerate(preds):
# 显示被分错的微博
if int(pred) != int(y_test[i]):
try:
print(origin_eval_text[i], ':', test_texts[i], pred, y_test[i], y_preds[i])
except Exception as e:
print(e) # 分别查看两个类别的准确率、召回率和F1值
print(classification_report(y_test, preds))

结果:

 

对自杀倾向微博的分类精确率为 100%,但是查全率不够,它只找到了 50 条里的 60%,也就是 30 条自杀倾向微博。

对于正常微博的分类,其精确率为 71%,也就是说有部分正常微博被分类为自杀倾向微博,不过其查全率为 100%,也就是不存在不被分类的正常微博。

这是建立在训练集还不够多的情况下的结果。我们的自杀倾向微博的数据仅仅才 300 条,这是远远不够的,如果能增加到 3000 条,相信结果会改进不少,尤其是对于自杀倾向微博的查全率有很大的帮助。预估最终该模型的精确率和召回率至少能达到 95%。

本次分享大家都明白了没? 另外很多人在学习Python的过程中,往往因为遇问题解决不了从而导致自己放弃,为此我建了个Python全栈开发交流.裙 :一久武其而而流一思(数字的谐音)转换下可以找到了,里面有最新Python教程项目可拿,不懂的问题有老司机解决哦,一起相互监督共同进步
本文的文字及图片来源于网络加上自己的想法,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

Python短文本自动识别个体是否有自杀倾向【新手必学】的更多相关文章

  1. Python + Selenium +Chrome 批量下载网页代码修改【新手必学】

    Python + Selenium +Chrome 批量下载网页代码修改主要修改以下代码可以调用 本地的 user-agent.txt 和 cookie.txt来达到在登陆状态下 批量打开并下载网页, ...

  2. Python实现一个桌面版的翻译工具【新手必学】

      Python 用了好长一段时间了,起初是基于对爬虫的兴趣而接触到的.随着不断的深入,慢慢的转了其它语言,毕竟工作机会真的太少了.很多技能长时间不去用,就会出现遗忘,也就有了整理一下,供初学者学习和 ...

  3. Python爬虫之cookie的获取、保存和使用【新手必学】

    前言本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:huhanghao Cookie,指某些网站为了辨别用户身份.进行ses ...

  4. Python学习笔记—自动化部署【新手必学】

      前言本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:唯恋殊雨   目录 pexpect fabric pexpect P ...

  5. Python基础语法总结【新手必学】

      前言本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:weixin_45189038直接上知识点: 1. 注释 单行注释: ...

  6. Python 如何定义只读属性?【新手必学】

    前言本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:Daniel2333如果还没学到属性问题,看不懂不怪你,可以先去小编的P ...

  7. 【新手必学】Python爬虫之多线程实战

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:清风化煞_   正文 新手注意:如果你学习遇到问题找不到人解答,可以点 ...

  8. Python自动输入【新手必学】

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:哈喽哈嘿哈 这篇文章是我的第一篇文章,写的不好的地方,请大家多多指教哈 ...

  9. Python自定义包引入【新手必学】

    前言本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:sys_song python中的Module是比较重要的概念.常见的情 ...

随机推荐

  1. JS高级---复习和课程介绍

    课程介绍 浅拷贝 深拷贝----------|======>递归 遍历DOM树-------|======>递归------晚上能够把代码写出来是最好的   正则表达式-------很重要 ...

  2. python面试的100题(21)

    正则表达式 94.请写出一段代码用正则匹配出ip? ip地址的生成规则. IP地址,是由32位数字二进制转为四个十进制的字符串组成. 怎么转化?下面讲解: 二进制:111111111111111111 ...

  3. pom.xml文件中dependency标签的scope子标签

    1.最近整合了公司的一个项目A,而A又依赖项目B,项目B中pom.xml中有一个依赖的<scope>provided</scope>,查了一下,原来provided属性,jar ...

  4. centos软连接的增删

    软连接操作 增加 ln-s 源文件 软连接名 修改 ln –snf 源文件 软连接 删除 只删除软连接 rm -rf 软连接名 只删除源文件 rm -rf 源文件 -r循环 -f强制

  5. 【转】VS2017离线安装

    [转自]https://www.cnblogs.com/feigao/p/8409606.html 第一步:下载离线安装包 https://www.visualstudio.com/zh-hans/d ...

  6. SpringMVC请求乱码问题

    今天做一个项目实现插入数据的功能,最开始没有添加FilterEncoding处理字符集乱码了,那是正常的,后来我添加过之后依然还是乱码,让我 百思不得其解,代码配置如下: EncodingFilter ...

  7. 【牛客小白月赛21】NC201604 Audio

    [牛客小白月赛21]NC201604 Audio 题目链接 题目大意: 给出三点 ,求到三点距离相等的点 的坐标. 解析 考点:计算几何基础. 初中蒟蒻表示不会什么法向量.高斯消元..qwq 方法一: ...

  8. sql注入学习笔记 详解篇

    sql注入的原理以及怎么预防sql注入(请参考上一篇文章) https://www.cnblogs.com/KHZ521/p/12128364.html (本章主要针对MySQL数据库进行注入) sq ...

  9. 140. 单词拆分 II

    Q: 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,在字符串中增加空格来构建一个句子,使得句子中所有的单词都在词典中.返回所有这些可能的句子. 说明: 分隔时可以重复使用字典 ...

  10. JVM的前世今生

    前世 jvm的数据区 分别是方法区(Method Area),Java栈(Java stack),本地方法栈(Native Method Stack),堆(Heap),程序计数器(Program Co ...