51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)
题目
推导
∑i=1n∑j=1nlcm(i,j)~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j) ∑i=1n∑j=1nlcm(i,j)
=∑i=1n∑j=1nijgcd(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{ij}{gcd(i,j)}=∑i=1n∑j=1ngcd(i,j)ij
=∑i=1nd−1∑i=1n∑j=1nij[gcd(i,j)==d]=\sum_{i=1}^{n}d^{-1}\sum_{i=1}^{n}\sum_{j=1}^{n}ij[gcd(i,j)==d]=∑i=1nd−1∑i=1n∑j=1nij[gcd(i,j)==d]
=∑i=1nd∑i=1⌊nd⌋∑j=1⌊nd⌋ij[gcd(i,j)==1]=\sum_{i=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}ij[gcd(i,j)==1]=∑i=1nd∑i=1⌊dn⌋∑j=1⌊dn⌋ij[gcd(i,j)==1]
=∑i=1nd∑i=1⌊nd⌋i∑j=1⌊nd⌋j[gcd(i,j)==1]=\sum_{i=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}j[gcd(i,j)==1]=∑i=1nd∑i=1⌊dn⌋i∑j=1⌊dn⌋j[gcd(i,j)==1]
=∑i=1nd(2∑i=1⌊nd⌋i∑j=1ij[gcd(i,j)==1]−1)=\sum_{i=1}^{n}d(2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\sum_{j=1}^{i}j[gcd(i,j)==1]-1)=∑i=1nd(2∑i=1⌊dn⌋i∑j=1ij[gcd(i,j)==1]−1)
=∑i=1nd(2∑i=1⌊nd⌋iiφ(i)+[i==1]2−1)=\sum_{i=1}^{n}d(2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i\frac{i\varphi(i)+[i==1]}{2}-1)=∑i=1nd(2∑i=1⌊dn⌋i2iφ(i)+[i==1]−1)
=∑i=1nd∑i=1⌊nd⌋i2φ(i)=\sum_{i=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i^2\varphi(i)=∑i=1nd∑i=1⌊dn⌋i2φ(i)
子问题:
求∑i=1ni2φ(i)\sum_{i=1}^{n}i^2\varphi(i)∑i=1ni2φ(i)
令f(i)=i2φ(i)f(i)=i^2\varphi(i)f(i)=i2φ(i)
使用狄利克雷卷积,卷一个g(i)=i2g(i)=i^2g(i)=i2
那么:
∑i=1n(f∗g)(i)~~~~\sum_{i=1}^{n}(f*g)(i) ∑i=1n(f∗g)(i)
=∑i=1n∑d∣if(d)g(id)=\sum_{i=1}^{n}\sum_{d|i}^{}f(d)g(\frac{i}{d})=∑i=1n∑d∣if(d)g(di)
=∑i=1n∑d∣id2φ(d)(id)2=\sum_{i=1}^{n}\sum_{d|i}^{}d^2\varphi(d)(\frac{i}{d})^2=∑i=1n∑d∣id2φ(d)(di)2
=∑i=1ni2∑d∣iφ(d)=\sum_{i=1}^{n}i^2\sum_{d|i}^{}\varphi(d)=∑i=1ni2∑d∣iφ(d)
=∑i=1ni3=\sum_{i=1}^{n}i^3=∑i=1ni3
=n2(n+1)24=\frac{n^2(n+1)^2}{4}=4n2(n+1)2
又因为:
∑i=1n∑d∣id2φ(d)(id)2~~~~\sum_{i=1}^{n}\sum_{d|i}^{}d^2\varphi(d)(\frac{i}{d})^2 ∑i=1n∑d∣id2φ(d)(di)2
=∑i=1ni2∑d=1⌊ni⌋d2φ(d)=\sum_{i=1}^{n}i^2\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}d^2\varphi(d)=∑i=1ni2∑d=1⌊in⌋d2φ(d)
=∑i=2ni2∑d=1⌊ni⌋d2φ(d)+∑i=1ni2φ(i)=\sum_{i=2}^{n}i^2\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}d^2\varphi(d)+\sum_{i=1}^{n}i^2\varphi(i)=∑i=2ni2∑d=1⌊in⌋d2φ(d)+∑i=1ni2φ(i)
=n2(n+1)24=\frac{n^2(n+1)^2}{4}=4n2(n+1)2
所以:
∑i=1ni2φ(i)=n2(n+1)24−∑i=2ni2∑d=1⌊ni⌋d2φ(d)\sum_{i=1}^{n}i^2\varphi(i)=\frac{n^2(n+1)^2}{4}-\sum_{i=2}^{n}i^2\sum_{d=1}^{\lfloor\frac{n}{i}\rfloor}d^2\varphi(d)∑i=1ni2φ(i)=4n2(n+1)2−∑i=2ni2∑d=1⌊in⌋d2φ(d)
使用杜教筛将时间复杂度降到O(n23)O(n^{\frac{2}{3}})O(n32)
数学太难了QAQ
代码:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<map>
#include<algorithm>
#define maxn 5000000
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define two 500000004
#define six 166666668
using namespace std;
inline long long getint()
{
long long num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
return num*flag;
}
long long n;
bool not_prime[maxn+5];
int prime[maxn+5],cnt;
long long phi[maxn+5];
map<long long,long long>M;
inline void init()
{
phi[1]=1;
for(int i=2;i<=maxn;i++)
{
if(!not_prime[i])prime[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt&&i*prime[j]<=maxn;j++)
{
not_prime[i*prime[j]]=1;
if(i%prime[j])phi[i*prime[j]]=phi[i]*phi[prime[j]];
else{phi[i*prime[j]]=phi[i]*prime[j];break;}
}
}
for(int i=1;i<=maxn;i++)(phi[i]*=1ll*i*i%MOD)%=MOD;
for(int i=1;i<=maxn;i++)(phi[i]+=phi[i-1])%=MOD;
}
inline long long getsqr(long long x)
{return x%MOD*((x+1)%MOD)%MOD*((2*x+1)%MOD)%MOD*six%MOD;}
inline long long solve(long long x)
{
if(x<=maxn)return phi[x];
if(M.count(x))return M[x];
long long sum=x%MOD*((x+1)%MOD)%MOD*two%MOD;
(sum*=sum)%=MOD;
for(long long i=2,j;i<=x;i=j+1)
{
j=x/(x/i);
(sum-=(getsqr(j)-getsqr(i-1))%MOD*solve(x/i)%MOD)%=MOD;
(sum+=MOD)%=MOD;
}
return M[x]=sum;
}
int main()
{
init();
n=getint();
long long sum=0;
for(long long i=1,j;i<=n;i=j+1)
{
j=n/(n/i);
(sum+=1ll*(j+i)%MOD*(j-i+1)%MOD*two%MOD*solve(n/i)%MOD)%=MOD;
}
printf("%lld\n",sum);
}
51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)的更多相关文章
- 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛
题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
- 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...
- 51nod 1220 约数之和【莫比乌斯反演+杜教筛】
首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...
- 51Nod 1238 最小公倍数之和V3
题目传送门 分析: 现在我们需要求: \(~~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)\) \(=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- [51Nod 1238] 最小公倍数之和 (恶心杜教筛)
题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑Nj=1∑Nlcm(i,j) 2<=N<=10102<=N ...
随机推荐
- 2019-5-12-WPF-模拟触摸设备
title author date CreateTime categories WPF 模拟触摸设备 lindexi 2019-05-12 16:19:32 +0800 2019-5-11 17:2: ...
- 获取active nn并替换hue.ini
namenodelists="nnip1,nnip2" nn1=$() nn2=$() nn1state=$(curl "http://$nn1:50070/jmx?qr ...
- 第三阶段:3.Web端产品设计:1.以用户为中心的产品设计2
从功能到体验.提供不同的附加值.
- 洛谷p-1522又是Floyd
挺简单一个题,可惜当时没想到,有点巧妙丫! #include<cstdio> #include<iostream> #include<cstring> #inclu ...
- 自荐一个 element 表单代码生成器
Element UI 表单设计及代码生成器,可将生成的代码直接运行在基于 Element 的 vue 项目中. github仓库 https://github.com/JakHuang/form- ...
- Netty堆外内存泄漏排查,这一篇全讲清楚了
上篇文章介绍了Netty内存模型原理,由于Netty在使用不当会导致堆外内存泄漏,网上关于这方面的资料比较少,所以写下这篇文章,专门介绍排查Netty堆外内存相关的知识点,诊断工具,以及排查思路提供参 ...
- JavaScript 构造树形结构的一种高效算法
引言 我们经常会碰到树形数据结构,比如组织层级.省市县或者动植物分类等等数据.下面是一个树形结构的例子: 在实际应用中,比较常见的做法是将这些信息存储为下面的结构,特别是当存在1对多的父/子节点关系时 ...
- 使用rapidjson把文本json数据解析到树状结构
一个递归搞定 无聊的时候练练手就写了一个 头文件什么的我就不贴了 demo程序是MFC写的 void ParseObject(rapidjson::Value dc, CTreeCtrl * pTre ...
- CentOS防火墙iptables使用
1.1 企业安全优化配置原则 尽可能不给服务器配置外网ip ,可以通过代理转发或者通过防火墙映射.并发不是特别大情况有外网ip,可以开启防火墙服务高并发的情况,不能开iptables,会影响性能,利用 ...
- Android短视频滑动播放(一)
本文主要介绍采用RecyclerView配合PagerSnapHelper实现短视频滑动播放内容. 1. 主页内容构建 主页布局文件定义RecyclerView,为RecyclerView建立对应适配 ...