Introduction

文章主要提出了 Dynamic Graph Matching(DGM)方法,以非监督的方式对多个相机的行人视频中识别出正确匹配、错误匹配的结果。本文主要思想如下图:

具体而言:方法采用迭代的方式,每次迭代生成一个二部图(bipartite),估计标签并学习区分矩阵。通过不断迭代,标签准确率提高,矩阵区分度更显著。方法加入了重新加权策略(re-weighting),提供软标签而不是硬标签,来降低标签的误差。

Graph Matching for Video Re-ID

(1)挖掘标签信息:

假设相机A拍摄的未标签图 GA 包含 m 个行人,表示为 [A] = {xai | i = 1, 2, ..., m};

相机B拍摄的图 GB 包含 n 个行人,表示为 [B]0 = {xbj | j = 0, 1, 2, ..., n},[B]0 指除了 n 个元素外包含0元素(为什么加上0元素?)。

目标函数:

其中 y = {yij} 表示 i 和 j 是否表示同一个行人,C = {C(i, j)} 为损失矩阵,其每个元素表示 i 到 j 的距离,计算为:(个人觉得这只是粗略提一下,具体损失函数在下面细说)

(2)惩罚函数:

总体惩罚函数:

Sequence Cost (CS) 惩罚匹配视频序列之间的差距:

Neighborhood Cost(CN)惩罚匹配视频邻居之间的差距:

其中和 表示相机A的第 i 个邻居行人和相机B的第 j 个邻居行人(即同一个人),k 为邻居参数,在本实验中 k 设置为5.

存在约束条件:

其中 分别是的邻居;

由于不等式的右侧三项均是很小的正项,因此也是个很小的正项,即:

Dynamic Graph Matching

(1)标签重新加权:

① positive re-weighting:

对于 y = 1 的项,设置软标签,可以过滤一些误报,然后分配不同的正样本对不同的权重:

② negative re-weighting:

对于 y = 0 的项,设置硬标签,过滤比较明显的负样本对:

其中设置 ,Cm 为 C 的均值,可参照下图进行理解:

总结:

(2)采用重新加权标签进行矩阵学习:

矩阵学习损失函数:

其中 c0 位一个正数,定义为两个相机的平均距离,马氏距离函数为:

矩阵学习目标函数:

其中 wij 为平衡正负样本对的平衡因子,如果为正样本对,,如果是负样本对,

(3)算法描述:

Experiment

(1)实验设置:

① 数据集:PRID-2011、iLIDS-VID、MARS;

② 特征提取:提取帧特征 LOMO,所有图片帧正规化为 128*64,采用PCA方法将特征维度压缩至600维;

③ 参数设置:迭代次数10次,λ = 0.5;

④ 实验环境:PC with i7-4790K @4.0 GHz CPU and 16GB RAM

(2)自我评估:

① 迭代效果:

② 重新加权效果:

③ 标签评估效果:

(3)对比监督学习:

(4)其他方法对比实验:

论文阅读笔记(十七)【ICCV2017】:Dynamic Label Graph Matching for Unsupervised Video Re-Identification的更多相关文章

  1. 论文阅读笔记十七:RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation(CVPR2017)

    论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-seg ...

  2. 论文阅读笔记(十九)【ITIP2017】:Super-Resolution Person Re-Identification With Semi-Coupled Low-Rank Discriminant Dictionary Learning

    Introduction (1)问题描述: super resolution(SP)问题:Gallery是 high resolution(HR),Probe是 low resolution(LR). ...

  3. 论文阅读笔记(十八)【ITIP2019】:Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification

    论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① P ...

  4. [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering

    [论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...

  5. [论文阅读笔记] Are Meta-Paths Necessary, Revisiting Heterogeneous Graph Embeddings

    [论文阅读笔记] Are Meta-Paths Necessary? Revisiting Heterogeneous Graph Embeddings 本文结构 解决问题 主要贡献 算法原理 参考文 ...

  6. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

  7. [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati

    [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...

  8. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  9. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

随机推荐

  1. 深入理解windows 消息机制

    深入理解Windows消息机制 今天我们来学一学Windows消息机制,我们知道在传统的C语音程序中,当我们需要打开一个文件时,我们可以调用fopen()函数,这个函数最后又会调用操作系统提供的函数以 ...

  2. 学习CSS之用CSS绘制一些基本图形

    一.三角形 如下图,通过设置 border 的大小和颜色可以形成四个三角形: 上图对应的代码为: /* 三角形 */ .triangle {     width: 0;     height: 0; ...

  3. CCF_ 201512-3_画图

    直接模拟就行了,注意坐标系方向与平常数组不一样,填充操作用深搜和广搜都可以,这里用了广搜. #include<iostream> #include<cstdio> #inclu ...

  4. 为了控制Bean的加载我使出了这些杀手锏

    故事一: 绝代有佳人,幽居在空谷 美女同学小张,在工作中遇到了烦心事.心情那是破凉破凉的,无法言喻. 故事背景是最近由于需求变动,小张在项目中加入了MQ的集成,刚开始还没什么问题,后面慢慢问题的显露出 ...

  5. C语言实现matlab的interp2()函数

    项目要用到matlab中的Vq = interp2(X,Y,V,Xq,Yq)函数,即把一个已知经纬度和对应值的矩阵,插值变换到一个给定经纬度网格中,也就是对给定网格填值,需要用到插值,这里使用双线性内 ...

  6. 杭电-------2053Switch Game(C语言)

    /* 题目大意是指:有n个灯泡,按1-n编号,要操作n次,第i次操作是将标号是i的倍数的变成相反状态.最终求得是n次操作后,编号为n的灯泡的状态,其实就是求n的约束有多少个,及灯泡n被操作了多少次*/ ...

  7. python 安装自己下载的whl依赖

    下载好之后保存到相应的地方,如下载了xxxx.whl文件并将它保存在D:\python\project目录下,然后 pip install  D:\python\project\xxxx.whl即可

  8. 解决pycharm打开html页面一直刷新

    顺序——> File ——>Project:项目名——>project Structure 右侧的 + Add ContentRoot下面只保留本项目路径,其他全删了 方法2(推荐) ...

  9. 制作OpenOffice的Docker镜像并添加中文字体解决乱码问题

    官网下载openoffice http://www.openoffice.org/download/index.html 本文使用的是Docker官方发布的CentOS7镜像作为基础镜像.镜像的获取方 ...

  10. spring boot 打包jar后访问classes文件夹的文件提示地址不存在

    报错内容:class path resource [client.p12] cannot be resolved to absolute file path because it does not r ...