QuantLib 金融计算——自己动手封装 Python 接口(2)

概述

对于一项简单功能,通常只需要包装少数几个类就可以,正如《自己动手封装 Python 接口(1)》演示的那样。

下面,将演示如何包装 QuantLib 中的复杂功能,最终实现从固息债交易数据中估计期限结构模型的参数

如何封装一项复杂功能?

经过一翻摸索后发现,要封装一项复杂功能,首先要找到最小功能集合,即这项功能直接或间接涉及的类和函数有哪些。然后,找到最小功能集合后再对涉及到的类或函数分别编写接口文件。最后,按照常规流程生成包装好的 Python 接口。

对于简单功能来说最小功能集合可能就是一两个类或函数。而对于复杂功能来说,寻找最小功能集合是一个递归的过程(A 用到 B,B 用到 C,...),最终可能找到很多类或函数需要包装。

寻找最小功能集合的策略

寻找最小功能集合有一些经验性的方法,以“从固息债交易数据中估计期限结构模型的参数”这项功能为例:

  1. 找到核心功能类,即 FittedBondDiscountCurve,最小功能集合要包含这个类、它的基类以及基类的基类,等等;
  2. 找到构造 FittedBondDiscountCurve 对象时涉及到一系列的类,例如 CalendarFittingMethod 等,这些类、它们的基类以及基类的基类也要包含在最小功能集合中;
  3. 找到 FittedBondDiscountCurve 成员函数涉及到一系列的类,这些类、它们的基类以及基类的基类也要包含在最小功能集合中;
  4. 把第 2 和第 3 步递归地进行下去,直到最小功能集合中的类和函数不再增加。

需要注意的是,到现在为止最小功能集合中出现的类有的可以发挥实际作用,例如 Date;而有的只是充当接口的基类,例如 FittingMethod,对于这些情况,要把它们能够发挥实际作用的派生类包含进最小功能集合。

实践

QuantLib-SWIG 从 1.16 开始修改了智能指针的包装方式,为了和最新版本保持一致,这里以 QuantLib 1.17 的 SWIG 接口文件为基础做适当修改,删去一些冗余代码,用以包装 QuantLib 1.15 的接口。

官方发布的接口文件中 FittingMethod 的构造函数不能接受 OptimizationMethod 对象,也不能进行 \(L^2\) 正则化约束。在本次自定义的接口文件中扩展了构造函数的接口,克服上述局限。

接口文件请见 QuantLibEx-SWIG

估计期限结构参数

《收益率曲线之构建曲线(5)》中的 C++ 代码翻译成 Python,验证封装后的接口是否可用。

import QuantLibEx as qlx

print(qlx.__version__)

bondNum = 16

cleanPrice = [100.4941, 103.5572, 104.4135, 105.0056, 99.8335, 101.25, 102.3832, 97.0053,
99.5164, 101.2435, 104.0539, 101.15, 96.1395, 91.1123, 122.0027, 92.4369]
priceHandle = [qlx.QuoteHandle(qlx.SimpleQuote(p)) for p in cleanPrice]
issueYear = [1999, 1999, 2001, 2002, 2003, 1999, 2004, 2005,
2006, 2007, 2003, 2008, 2005, 2006, 1997, 2007]
issueMonth = [qlx.February, qlx.October, qlx.January, qlx.January, qlx.May, qlx.January, qlx.January, qlx.April,
qlx.April, qlx.September, qlx.January, qlx.January, qlx.January, qlx.January, qlx.July, qlx.January]
issueDay = [22, 22, 4, 9, 20, 15, 15, 26, 21, 17, 15, 8, 14, 11, 10, 12] maturityYear = [2009, 2010, 2011, 2012, 2013, 2014, 2014, 2015,
2016, 2017, 2018, 2019, 2020, 2021, 2027, 2037] maturityMonth = [qlx.July, qlx.January, qlx.January, qlx.July, qlx.October, qlx.January, qlx.July, qlx.July,
qlx.September, qlx.September, qlx.January, qlx.March, qlx.July, qlx.September, qlx.July, qlx.March] maturityDay = [15, 15, 4, 15, 20, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15] issueDate = []
maturityDate = []
for i in range(bondNum):
issueDate.append(
qlx.Date(issueDay[i], issueMonth[i], issueYear[i]))
maturityDate.append(
qlx.Date(maturityDay[i], maturityMonth[i], maturityYear[i])) couponRate = [
0.04, 0.055, 0.0525, 0.05, 0.038, 0.04125, 0.043, 0.035,
0.04, 0.043, 0.0465, 0.0435, 0.039, 0.035, 0.0625, 0.0415] # 配置 helper frequency = qlx.Annual
dayCounter = qlx.Actual365Fixed(qlx.Actual365Fixed.Standard)
paymentConv = qlx.Unadjusted
terminationDateConv = qlx.Unadjusted
convention = qlx.Unadjusted
redemption = 100.0
faceAmount = 100.0
calendar = qlx.Australia() today = calendar.adjust(qlx.Date(30, qlx.January, 2008))
qlx.Settings.instance().evaluationDate = today bondSettlementDays = 0
bondSettlementDate = calendar.advance(
today,
qlx.Period(bondSettlementDays, qlx.Days)) instruments = []
maturity = [] for i in range(bondNum):
bondCoupon = [couponRate[i]] schedule = qlx.Schedule(
issueDate[i],
maturityDate[i],
qlx.Period(frequency),
calendar,
convention,
terminationDateConv,
qlx.DateGeneration.Backward,
False) helper = qlx.FixedRateBondHelper(
priceHandle[i],
bondSettlementDays,
faceAmount,
schedule,
bondCoupon,
dayCounter,
paymentConv,
redemption) maturity.append(dayCounter.yearFraction(
bondSettlementDate, helper.maturityDate())) instruments.append(helper) accuracy = 1.0e-6
maxEvaluations = 5000
weights = qlx.Array() # 正则化条件 l2Ns = qlx.Array(4, 0.5)
guessNs = qlx.Array(4)
guessNs[0] = 4 / 100.0
guessNs[1] = 0.0
guessNs[2] = 0.0
guessNs[3] = 0.5 l2Sv = qlx.Array(6, 0.5)
guessSv = qlx.Array(6)
guessSv[0] = 4 / 100.0
guessSv[1] = 0.0
guessSv[2] = 0.0
guessSv[3] = 0.0
guessSv[4] = 0.2
guessSv[5] = 0.15 optMethod = qlx.LevenbergMarquardt() # 拟合方法 nsf = qlx.NelsonSiegelFitting(
weights, optMethod, l2Ns)
svf = qlx.SvenssonFitting(
weights, optMethod, l2Sv) tsNelsonSiegel = qlx.FittedBondDiscountCurve(
bondSettlementDate,
instruments,
dayCounter,
nsf,
accuracy,
maxEvaluations,
guessNs,
1.0) tsSvensson = qlx.FittedBondDiscountCurve(
bondSettlementDate,
instruments,
dayCounter,
svf,
accuracy,
maxEvaluations,
guessSv) print("NelsonSiegel Results: \t", tsNelsonSiegel.fitResults().solution())
print("Svensson Results: \t\t", tsSvensson.fitResults().solution())
NelsonSiegel Results: 	[ 0.0500803; -0.0105414; -0.0303842; 0.456529 ]
Svensson Results: [ 0.0431095; -0.00716036; -0.0340932; 0.0391339; 0.228995; 0.117208 ]

所得结果和《收益率曲线之构建曲线(5)》中的完全一致。

修改官方接口文件

如果已经安装了 1.16 以后的 QuantLib,只要对官方接口文件稍加修改再重新包装 Python 接口,就可以扩展 FittingMethod 的构造函数,使其能接受 OptimizationMethod 对象,并能进行正则化。

NelsonSiegelFitting 为例,需要在 fittedbondcurve.i 文件中用

class NelsonSiegelFitting : public FittingMethod {
public:
NelsonSiegelFitting(
const Array& weights = Array(),
boost::shared_ptr< OptimizationMethod > optimizationMethod = boost::shared_ptr< OptimizationMethod >(),
const Array &l2 = Array());
};

替换

class NelsonSiegelFitting : public FittingMethod {
public:
NelsonSiegelFitting(const Array& weights = Array());
};

下一步的计划

  1. 包装 QuantLibEx 中的几个期限结构模型;
  2. scipy 的优化算法引擎要相较于 QuantLib 自身提供的要更丰富,尝试使 FittingMethod 能接受 scipy 的算法。

QuantLib 金融计算——自己动手封装 Python 接口(2)的更多相关文章

  1. QuantLib 金融计算——自己动手封装 Python 接口(1)

    目录 QuantLib 金融计算--自己动手封装 Python 接口(1) 概述 QuantLib 如何封装 Python 接口? 自己封装 Python 接口 封装 Array 和 Matrix 类 ...

  2. QuantLib 金融计算——收益率曲线之构建曲线(3)

    目录 QuantLib 金融计算--收益率曲线之构建曲线(3) 概述 估算期限结构的步骤 读取样本券数据 一些基本配置 配置 *Helper 对象 配置期限结构 估算期限结构 汇总结果 当前实现存在的 ...

  3. QuantLib 金融计算——基本组件之 Currency 类

    目录 QuantLib 金融计算--基本组件之 Currency 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Cu ...

  4. QuantLib 金融计算——高级话题之模拟跳扩散过程

    目录 QuantLib 金融计算--高级话题之模拟跳扩散过程 跳扩散过程 模拟算法 面临的问题 "脏"的方法 "干净"的方法 实现 示例 参考文献 如果未做特别 ...

  5. QuantLib 金融计算——基本组件之 Date 类

    目录 QuantLib 金融计算--基本组件之 Date 类 Date 对象的构造 一些常用的成员函数 一些常用的静态函数 为估值计算配置日期 如果未做特别说明,文中的程序都是 Python3 代码. ...

  6. QuantLib 金融计算——基本组件之 Schedule 类

    目录 QuantLib 金融计算--基本组件之 Schedule 类 Schedule 对象的构造 作为"容器"的 Schedule 对象 一些常用的成员函数 如果未做特别说明,文 ...

  7. QuantLib 金融计算——基本组件之 Index 类

    目录 QuantLib 金融计算--基本组件之 Index 类 QuantLib 金融计算--基本组件之 Index 类 Index 类用于表示已知的指数或者收益率,例如 Libor 或 Shibor ...

  8. QuantLib 金融计算——基本组件之 InterestRate 类

    目录 QuantLib 金融计算--基本组件之 InterestRate 类 InterestRate 对象的构造 一些常用的成员函数 如果未做特别说明,文中的程序都是 Python3 代码. Qua ...

  9. QuantLib 金融计算——数学工具之数值积分

    目录 QuantLib 金融计算--数学工具之数值积分 概述 常见积分方法 高斯积分 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之数值积分 载入模 ...

随机推荐

  1. 双括号(()),shell与C++的桥梁

    使用语法: ((表达式))用来扩展Shell中的算术运算,以及赋值运算,扩展for,while,if条件测试运算. 注意点: 1.在双括号结构中,所有的表达式可以像c语言一样,如a++,b-- 2.在 ...

  2. vuex之getter(二)

    说明 使用vue,如果想对data数据派生一些状态,我们就用到计算属性或者侦听器,同样vux想要派生state中的一些状态,可以在store中定义一个getters属性,它相当于state的计算属性. ...

  3. GDI+如何判断一个点是否在区域内

    https://msdn.microsoft.com/en-us/library/windows/desktop/ms533826(v=vs.85).aspx The purpose of hit t ...

  4. gentoo在KVM+QEMU中安装笔记

    gentoo是比较难安装的,本笔记主要是记录本次安装过程,以备参考. 1.首先,下载镜像,可以去国内各大镜像网站下载,我选择的是清华的镜像源:https://mirrors.tuna.tsinghua ...

  5. 未来图书-需求分析——脑机接口、VR、AI推荐系统

    个人比较喜欢科幻作品,也常常畅想未来.. "书"作为几千年来人类文明信息载体,必然会不断演变.. 文荟宿舍墙上贴着Elon Musk的海报,向往像他一样能够在有限的生命中用极致的想 ...

  6. EMC NW disaster and recovery simulation 1

    终于可以模拟成功了虽然只是个实验但是很有借鉴意义. 前期的准备就不说了都懂直接上图吧 scanner -B networker_indexclone to find out the laster bo ...

  7. Go语言实现:【剑指offer】合并两个排序的链表

    该题目来源于牛客网<剑指offer>专题. 输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则. Go语言实现: //递归 func merge(l ...

  8. 【题解】P1559 运动员最佳匹配问题

    [题目](https://www.luogu.com.cn/problem/P1559) 题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组 ...

  9. c++算法:计算行列式的值(详细讲解)

    参考了:https://blog.csdn.net/u011885865/article/details/42032229 需要的基础:学过<线性代数>,知道行列式值的求法 基本公式:对于 ...

  10. SSL公钥证书传递进行隐匿传输数据

    title: 使用X.509公钥证书传递进行隐匿传输数据 date: 2018-02-11 17:47:50 tags: --- 使用X.509公钥证书传递进行隐匿传输数据 看到国外一篇有关于在ssl ...