C算法编程题(一)扑克牌发牌
前言
上周写《我的编程开始(C)》这篇文章的时候,说过有时间的话会写些算法编程的题目,可能是这两天周末过的太舒适了,忘记写了。下班了,还没回去,闲来无事就写下吧。
因为写C++的编程题和其他语言实现功能不一样,要动脑子,写笔记,思考整个的流程。就比如实现字符串截取,C#直接一个SubString搞定,C可能要用到指针来实现。当时参赛培训的时候不知道死了多少的脑细胞,现在想想都后怕,但是前话都说了,得必须写了。今天写的这个扑克牌发牌的题目,是我在参赛培训的时候练习的,记得当时写了好长时间才搞出来,现在我看的话得看十几分钟才能回忆一些出来。希望写的这些题目可以帮到开始学习算法的同学,大牛请飘过!
废话不多说,直接上题目。
题目要求
程序描述:
一副纸牌有52张,4种花色,每种花色13张。我们能用一个整数m就表示出所有的52种情况,规则是:
m / 13: =0: 红心,=1: 方块,=2: 梅花,=3: 黑桃
m % 13: =0:2,=1:3,=2:4 .... =8:10,=9:J,=10:Q,=11: K,=12:A
比如:m = 15 就表示:方块4 m=38表示:梅花A
我们希望用程序模拟1副扑克牌随机抽取13张,发给某人的过程。
发牌后需要排序:规则是:先按花色,再按点数。花色的大小顺序是:梅花、方块、红心、黑桃。点数的顺序是:2、3、4、…. 10、J、Q、K、A。
然后,挑选出最大的连续牌型。规则是:连续张数多的大。张数相等的则花色大的大(此时与点数无关)。
程序实现
我们先分析下,上面的题目要求描述的很清楚了,我们要实现三个步骤:1,发牌(随机)2,排序 3,输出最大的连续牌型。
1,发牌
这个比较简单,我直接贴下代码:
int m,k=,i,j,l,t,x,y;
int puKe[][]={};
int w[]={};
char point[]={'','','','','','','','','','J','Q','K','A'};
srand(time(NULL));
while(k<)
{
m=rand()%;
x=m/;
y=m%;
if(puKe[x][y]==)
{
continue;
}
puKe[x][y]=;
printf("%c",x+);
if(y==)
{
printf("");
}
printf("%c ",point[y]);
k++;
}
这里我们用point数组存储点数,puKe数组的下标分别存储花色和点数,值为1表示这张牌已经发了,x+3是花色的转义字符。
2,排序
其实这个也好实现,因为我们存储的发牌在puKe数组中,排序规则是先按花色,再按点数,这里我们用笨方法,用四个for循环就可以实现,分别遍历puKe数组。
示例代码:
for(j=;j<;j++)
{
if(puKe[][j]==)
{
printf("%c",);
if(j==)
{
printf("");
}
printf("%c ",point[j]);
}
}
for(j=;j<;j++)
{
if(puKe[][j]==)
{
printf("%c",);
if(j==)
{
printf("");
}
printf("%c ",point[j]);
}
}
for(j=;j<;j++)
{
if(puKe[][j]==)
{
printf("%c",);
if(j==)
{
printf("");
}
printf("%c ",point[j]);
}
}
for(j=;j<;j++)
{
if(puKe[][j]==)
{
printf("%c",);
if(j==)
{
printf("");
}
printf("%c ",point[j]);
}
}
3,输出最大的连续牌型
示例代码:
int count[]={};
int index[]={};
int temp=;
for(i=;i<;i++)
{
for(j=;j<;j++)
{
if(j!=)
{
if(puKe[i][j]== && puKe[i][j-]==)
{
temp++;
}
else
{
if(count[i]<temp)
{
count[i]=temp;
index[i]=j;
}
temp=;
}
}
}
count[i]++;
} int max=; if(count[]>max)
{
max=count[];
temp=;
}
for(i=;i<;i++)
{
if(count[i]>max)
{
max=count[i];
temp=i;
}
} int a=index[temp]-max;
for(i=;i<max;i++)
{
printf("%c",temp+);
if(a==)
{
printf("");
}
printf("%c ",point[a]); a++;
}
count数组的意思是各个花色牌连续最大数,index数组存储的是开始各个花色连续的开始点数,就是point数组的下标。
实现效果:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApkAAADNCAIAAAB8TfzNAAAgAElEQVR4nOy9Z3BbV57oeb9s7b6telO7NbVVb+a9mXG3bXXbLdsKlChROYuiAkWKFCnmBOYMBoAECTACJEAAJHLOOefMTJGisi3ZlnPotttuT7u7n994dj7sfjgXFxdgEEWr7Z5u/OtXKhC8PDj3Ujy/8z/n3HMhi2e2hyzYBr0UQS9FQKAICGNCwpiwb1zUPy7qHxf3U8VEmoREkwxMSAfoMIMM6SBDBkNPZCCBCSkaUjxEmiQGNUY/VRxjPEbfuAhmDEEIADXvHRPAUAS9FEEPmQ/Aj/LwozwcYITbNRxliNs1xO0c5HQOcjoGOR2DHOwAGzvAbiex2kmsNuJUWz9gsqWPCWjuYzQTGE0EemPPREPPRD2eVo+n1eFodThabTe1pmu8unMM0zmG6RirwlKqsJTKdnJF22hF22h520hZ63Bpy3BJ81Bx01Bx02BR42Bh40BBA+lGPSm/jphf259f259X03e9uu96dV8OhpBT1Xutqje7qje7sierAn+1Ap9Zjsssx10p675c2n25tOtSSdelks5LxZ0XizoyirAZRdgLBe0XCtrTC9rTb7Sdv9F2/kbbufy2c/ltZ/Pbzua1ns1rPZPXeiav9fT1FsCp3OaTgJymkzlNJwDXGk9cazyR3Xgiu/F4dgPg2NX6o1frj2bWHc6sPXSl9uCl6oOXqlMzMPvSq1LOV+w9X77nXNnus2W7Tpe+cbr09VMlUYpfO1kE2HkiSZK/UJD/pa+dLHrtZDGa10+hKXn9VMkbp2PsOl0KcwZm95my3WfK9pwt23O2bM+58j3nyvcCzlfsPV+Rcr5iX3olYP+Fqv0XqlIBGZgDFzEHLlaDv6y0S9Vpl2sOXa45dLnmcGbt4czaI5l1R6/WH8uqP5YF/iQbT1xrBH+2p3KbT+c2n7neciav9Wxe67n81nM32tIL2tML2i8UYjOKOi4WdVws7rxU0nW5tOtKWXdmGe5qOe5qOT6rAp9d2XOtqicH05uLIeRWE67X9OXV9ufX9t+oI96oJxXUkwobBooaB4ubhoqbhkqah0qah0pbhstahsvbRiraRivaRyvbyZVYciWWjOmgYDrGMB1j1Z1jNV3jNV3jq/fffnXXgUfvfuifWQ7ArARmVgKzMMHZleDsLYTQXDzzMOH5VYSHj9/HdvV+/NkX4fnVyALC7WdievEOwlvvfMCsLHoyP3dXyAHcF3IeijgPRaxHItZjEesdEeuJmPVEzPpAzPpQzPpQzPp4HdgJfILioygfitnvidlPxOx3Rey3RexHIvabIvZDIfeBkHtPyL0n5L7t9187cRRC1LV10BbvGxf2j4uIVDGRKibRxAN0yRBDOsSQjUzKR6cUo1NKMktJZqsobBWFo6Zw1BTwehNYSjTkeEanFDEmY4xMymMwYYajDDFkCQwyQPdCOoBAlwzQJaQJCWlCQqLBEGliIk3cNy7qpyIdAiFhTEigCAiUqPsp/B4KH0/m4Ue5+FEuboSLFn/nEKdziNMxyMaSWFgSq5001U6abCdNthEnW/uZLf2Mlj5GE4HR1AtrvgE/UY+n1eOodThqbfd4TddYdddYdScF00GpwlKq2smV7aMV7SPlbSPlrcNlrcOlLeBPZbC4abC4aaCogVTYQCpsIBU0kG7UE/Pr+vPr+vNq+67X9F2vIeRW9+ZienMwPTmYnpyqnmtV+OwqfHYlPqsSn1WBv1qBu1qByyzHZZZ3XynrvlLWfaW0C3C5pPNySeel4g7AxeKOi8XYi8XYDEBRe0ZR+4VCmHRAtHNwNr/lbH7LmevNJ3Oajl9rOJpVf+Rq3aEr1QcvYVIzKvdfqNh7rnzP2bJdZ0p3nS5543TJ66eKAK+dLHztZOHOE0mS/IUC/ouiiLM78j/59VNFaLW/cRpm1+kSmDMlu86U7D5TCthztnTP2dI958r2nCvbCzhfnhJlX3rFvvSK/Rcq91+oTL1QmZpRlZpRdeBi1YGLmIOXMAcvYdIuVaddrj50ufrQlZrDmTVHMmuPXK09crX26NW6Y1l1x7Prj2c3nLjWcDKn8WRO46ncptPXm89cbz6T13I2r+XcjdbzN9rSC9rSC9ovFLZnFGEvFmEvFndcKum4XNp5pbQrs6z7ajkuqwKXVYnPrsRHjd4bNXpffm3fjbr+G/XEwgZSYSOpqHGguGmwpBkwVIYYvX20on0U6DxqdEp1J6W6kxJ1+Qf+mWWUzpcDM8uIy6NGX1nf6DGdwzx8/H4Lthu4HIAy+rpspHOYt975gF6a987szC024xabcYfNuMtm3OcyHnAZD7mMR1zGYx79HR79CY/+hEf/gE//kE//kD/x8cZ8hHr9CZ/+EZ/+EZ/xIZ/xAY/xHo/xhMd4m8d4m8d4zGW+yWU+5DIfsJn32My7bOYqm/m22519LO2ZXQ6LHGXxgQnJwIRkiCEdZspHpxQUlnKMrRrnaqg87QRfNyHQ0YV6hsjAXANjLUI9GjqKCYEuDj4abQweDC0KladJYJyrBowBOFHYqjG2isJSUViqhK7DyJRiZEoxPCkfnkzsIgzSpYN0KbgIpAkJiSYGPQAiFe4BxLJ/iqCXwu+l8HvIPNwor3uY2z3M7R7mdA2xO4fYnUPsjkEWdgD4fqqNGPV9HxPk9E299MbeicZeOLOvw1Hruql13eOw8jvHMJ1jVR2UKiy5CkuubB9FrF/WOgzTMlzaMlSKdn/TQFHjQGEjqbAx2gmoJxXUEQvqiDfq4K4A6A3k1fZdB9QQYlT3Xq/uzcXA5ACqYK5V9WRX4rMqwJBA18XijguFbefyW87kNZ/MaTyeXX/kam3apeoDGVX70oHRS3edKXnjdDFa5z95e50kyUascXmi0eN1Hif17Rl9b7zRgdRTo1J/qtGBzo9l1R/LWmN0IHVg9Pw1Ri/uuFTScamk80pp15WymNGz0UavJlyvIYC2Ahi9oJ5YUE8sbCQVNw0gOi9tGSprGS5rhY1eGTV6FZYMdL56//Gru1IfPHriDMw5A3POwLwLTXDBFVxwI4QAi+7QogcQjsMbXvSGF+8+fKexpeP9jz7zRpYQfJElX2SJQKJl52I2gTBA80/fTODeW+/SC7Ieh0NLdPIynXyLTr7FIN9hkO8yyPeZ5IdM8kMm+TGT/JhJfpdJfsIcfZ85+gFz9EPm6IfMUWpzO1I4tbl93Xc+YpI/YJLfY5LfY1LeZVLeZlIeMylvMilvMikPmJR7DModBmWVQVmlU1bolDft9quHU5/N5ah0XBRNxKXA4uQpJYWtonI1E3wdXahnigxTEhNLaubILRy5laew8pU2NLwEFFY03ATklo3gIMhisKOwpOZEJCbAFIxxSmKcFBsnxYZJcXxXA+lSCPR0QbQzEe000HhaKlcDgHsGsaEFuDcA9wPW0z8s/gkJiQbmBUT9VFF05B8e6o8O8nNxI9zuEW7XMKdriIMoHzsAJ/ptxMlW4mRrP7MVGc/vg93f1DvR2DPRiKT7eFodHtZ/bfd4bVc074ez/7HqDgroIIMOQRWWXIkdjQH3D0Yr2kcr2kYq2kbKW0fKW1F9hRhDgOKmwcIGUkE9Ma+2L7e6N7sKn1nedamkI72g7Uxey6ncpmNZ9Yczaw9ewuy/UJGSXr7nXOnusyW7TqPH2H/6JjtJks3ZPEHfRo6OSH3rRt8fZ3RY6sDoQOprjb5Ojp7btFmOjkrQo0bvBkZHEvRoR78vv7Yvv64fGL2wgVTUOFDUGG/01uGy1uGKtpHKeKOv3n/8yhupdx68bXSEjI6QyRkyOcMmZ9jsDJtdMSxuhIjFHbECPIBpG8ALc+veo5qG1icffGLzzqCx+2ayczH/36aRnYtx+GYdvlmHP8bt+48nci498nsXyMRFMnGJTFwiE29RiLcoxDsU4l0K8QGF+JBCfItCfEzpf4fS/y6l/wmlD4D+xOxczHh9c8I74LD3KMR3KcS3KcTHFOKbFNKbFNIDCukehXSHQlqlkG6RSTfJpJtk0hKZ9NBsupK69xlcjsrI4XR8kC4dYshGpxSIxZlC/aTEyJaZOXIrX2UXqB0irVOidUl1LpnejSBNQOdCI0lAuz5irTOGBkaEQqh2xGMHCBBUdoHKvqaTEetMcORWjtwa7SKYOTIzW2ZmSU1Ih4AlMU1JjHHjDUIDPKIQFT+Nr6XxtVSehsrVjHPU4xz1GJhrAKk/YFIR9b1siAmWEUgH6HCuD7J8IlXUNy7sG4dn+nujyu8Z5eNH+WBSHzfC7R7mdA1zuoY5nUPszkF2xyCrY5CFBfonTWFJU+2kqXZitAdAZLYSmUg/AOkKNPcxmgn0ZgK9CdALRgXojb10uHMAQ4PB0xrwtHo8FaEONU1Q1UEubxsubRkqbCDl1/XnYHqulndfKu5IL2g7c73pxLWGI1dr0y5jDmRU7ksv33OudNeZ2JT5T95MJ0myFZ49R1/H6DGp/xmMfmiDNH2TUfdz+a1Ro8MzaBeLsBeLsGijXy3vvloeG3K/VtWDGB0k6PnIkHsDGHKHjV7aAhu9vG0ENjqWXIkl37r3+Jev71+8dV+isSFItXap1i4D6BwIcj3AKdc7FXqnQu9UGhBcSoNLaXQpja7Zm3fKquofPn5PZXSpjG40W3G5xuxJYH75LuXSqQdOewiPjeCx0z3YmR7sfC92obd9qbd9ubdtldB+m9B+j9B+n9D2JqHtEaHtEaH1bULr24TWMUxdgrzRr8eq697ua33c1/qor+2tvrYHfW0P+tru9bXfIbSvEtpXCO03CdgFAna+Fzvbi53pxU73YO9oVRd373w2lyeIHKTjY2wVjadlCPVTYiNLauYqrAKVXaR1SvRuucGjNHlVZr/GEtBag1prULMOATTqBCz+GOYYqk1RmnwJKIzetcgNXrnBIzd4ZHqEWFdDonOjug5OiTbaS1A7AHDPAHQIVHY+aoCBK7dGhwrMbLgHYAbinxQbJ8VGpsjAEOkZIjjvBxk/DaT7PO0a66PG/CcVI4j44bn/2Dh/dLJfTKLBuX50pl/YNy4kjIPlfvBMfy9F0BNd6wfGAGJr/aIr/sCQQPcIt3uYg/QS4hiCRws6YzMFMdoHptqIzGYCvQFPq+kaq8SSS1uGCxsH8mr7rlX1XCnryihqP5vffCq38VhW3aHL1QcyKlPOl+8+W/rG6aTOk/wn46k632KOvpHRn3ngfWtGP5aFpOlPz9GB0aM5eudmk+jVhJjR4xP04ibE6PCQe3nbCDLkDlw+u3SbJzPyZEa+HMHEl5sECpNAYRIozQKlWQhQmYUqs0hlEaksYgQ1wCpRWyVqa2T+VnFF7f233oF7BigQla4dXUfelyHdCK1dprPLdPbpxVVy+rH7dkugoynQ0RTqaIp0NM10Nc11Ncx1NSx1NSx3N9zqbriNa7iLa3iAa3iIa3iIa3grCrmqem0fIjsXQ66qBgeA4x/gGu7iGu7hGldxjavdjSvdjTe7Gue7Gue6Gmc7mqc7msMdzcGO5lWl/MLrr2zV5WB0vW9c2E8VkSYkA3TJMFM2OqUY46hhkUtMHLmFr7KLNE6p3i03elVmn8Ya0NtDBkfY5IqY3dPr4IrDhMLoisThfAqGKHpHOBF7CKBDsAGCOltQawtqbUGNLa5jkdCHUJn9SvM6PQO5wSMD6D0yuAfgkuhcYjBsEB0qAKMCwPoCWPk2nsKGTB+wZRa2zMyWmpGRf6D8SdRoP12gpwt0dIGOxtfFlgJEB/nHOOoxNjzOT2YjSwUByApBxfCkAp7yZ8iGE9YDgg4BjCQGWApAQxAnQIwSdysBVdRPFRHGBD1kXvcIBzvAauljNvRM1HSNV7aPljQP3ajrz8H0ZJZ1ZRRhz+W3nMxpOAIPtlfuPVe2+0zpG0mXJ/lPyLPr/Gmj7s91Kj3tUnXaJVjn606lbzFHRy2L67xc2nmlDOTosNFBgg6MDpbFwWviEo2+Zk1c28jKvce/fH1/eP7WpEAzKdRMAURaAEukZYt1bLGOLdGxJToOQKoHcKUGBJ4MYOTJjIGZpYJSzJ0Hj5GeAdwnUJiyczHffvvtt99+m52LAe8IFSZh/PtCpUmIdB2UZqHSHJpdHjlz6K7F6G2u8TbX+Jtrgs014daa6VbMTCtmoRWz1IZZbsPcasfcbsfca8fcb8fcb8c8RDFaXoV8BPiU0Yqqh1jMQyzmTSzmARbzAIu5j8XcwWLuYDEr2Orl9uql9uqFtuqZturptupIS22opTbQUutrqV2Ric/v3LG+y+mT3GdiSmICg+pirUtm8CjNPrXFr7MFDY6wyTVt8cxYvbM231wc3lk01ngs3pkYHpgJDARhxMiXFncMc4xoL4FVD0H1NDfSM0CI7wE4AGGDI6x3hPSOeOujZQ80b/FrLH61BT0M4EM0j6T7UcEjKX5sUkCkcYo0DqHaIVTZhahBfp7CxlNYuQpk+t8M7I4k9FMou8cEH3U8WAMIMntE8+NczTgnluKPcVRgfR+s/IR7BABr7hQYgZkq2Q29VjOJuk1AhjC0AQMTEiJNTBgT4kd5nUPsNuJkM4Feh6NiOsilLYMFDcSozttPX28+kd1w6ErNgYtVCan5T946J0nyTGyQoD+D1NfJ0f+ci+OOZNaijJ44j346avSzGxj9Ukl0Hj1+WRza6OuscoeNPljcFJegr9x99MvX9wsVpuuV2LxKbF4lNr+q4wam4wamowDTmXujfvOlatcLGkrq8KX1+NJ6fFkDDEukSTtxweWfKW/qRahoIlQ0EbJzMV9++eWXX36ZnYupbO4DVDX3od+vaukDYKLwpLquf/qvs8wJ3r5XhfteFe1/Vbr/VcX+V1X7X9EdeMV44JfWAzucB3e40nb40naE0nZE0nbMxEPMyEA+AnwKMSMDfcB02o5Q2o5A2g5f2g5X2g572i+sB39hOvhL/cFX1KmvyFNflaa+Kk59VbT/VV9v94H/6//Y0OVvvvvxRtTgmOh/6ZNctszMU9qEGodE75YbvWozELmgDEKikRlYcMDIKiCogjfvCMAwayDo6Lg8+qVs6AQEnejTztv983b/vJ3bCL5kVENQtcTun7P75+w+mMQuAgKnAYIa6AldBA9gxuJJdL8J4IqY4kcCDI6woP8YdGhU4Aiv63gtKpVfO8ivMHoVRo/C6Ilm8G6pzi3VoeyucYo1DqHGIVQ7kMQ93u5WZH0fW2ZmDyAXtbQ75njqVeRKXx9nCPnVKdCuJj7I4wHIgn/E93GL/LlR90eH9xHGOKoxjmqMwyrfA71ex0J6A2Pr3FKoRAD9g5FJxRBDRpqQ9I2LojpnNvTQarrGKtpHipvAYDv+cknn+Rutp3Kbjl6tS7tcDVJzZNb8J2+akyR5VjbW+TOMuj/D4rgN7mHbxOiJA++bzqMnLHRHjbrH5tHRC93hSfR1lsX15UUT9PXuWxsqbRlaufvoF6/v50n1V4ubs0qas0uas0uar5W2XCttuVbWspXpbSB+4P4CTGdhdSeTr0w9es7uiRTVdieQnYv57LPPPvvss7XdAuT90nocQlk9vqwezxKqO/7hv8xMjHPeeIn/xkuCXS+Jd78k2/2SYveLmr0v6vf+3Lz3BXvKC459L3j2vRDY90Jo3wsRFP3p55HykcjOxfSnn0eOCe97IbDvBd++Fzz7XnDse8GS8oJp7wuGvS9q976k3P2SdPfL4t0vC3e/LNj1shfXsf/v/rcNXX7r9p0tQp/kRpNyp8zgUZp8GmtALxs5CEFpAxard9bun3fyG6FauSu06AotuoKLyuGTUI3cFVyE4TdBUNNUcNEZXHAGFyZrIAiCKvkLzsCCM7CgGDoBHaUqAvCXaKKdgwXY+mi4DRDUwPDP2QC+OZsXgBoG8MCgE32046M5vbAEOoZXRIfxQRKPGrePJu7BhPF5ldmnMvuUJq/S5FUYvVO4I9DBAabBIzN4pHogdRda6mAyHjUHb4ubg1dYufKJa/t7yTILWyau2wdB+TSW1MySimr3HaylG6ckxqkJ/G4IyiIaJ4klUApuMLYiL25NPpzKb3x3X1T2GhScyr3QGw0ctPujqNGMo6CwVSOTikG6lEgT9VL43SOcdtIUSM2rsKOlLYM36onXqnoyy7ovFGLP5DUfz64/dKUmNaNy7/ny3WdKky5P8p+aH2D0Zxt438joe5+yOG5LN7BtPuq+yUJ3ZFlcLEHH9CJr4oDRgc5R960NLd99tOO1fVyZPqu4Oau4ObukJbu0Nbu09VpZ67Wy1uxczL9uGsDlwOIFmM7C6q7C6i4mX5l67JzdO11YAxSOK6rFFdfiimtx2bmYDzeN7FxMGSrFL2vAlzX0sEWajn/8P2fo49xdO/i7dgj37BDv2SHbu0Ox92VNysv6lBfN+37u2P9z5/6fe1N/Hkj9eSj155Eo/RfS0R+a8Lr/Qjo4LJz6YiD1RX/qi57UFx2pL1r2v2hKeVGf8pI25WVlysuylB2SvTtEe3YIdv/Ch+/Y/3f/+4Yuh7Yc9EkuV2EVqB0SrVNu8KjMPq1NjzsEpZHMFs+MzTfnCCy4Qovu8JI7FMVAOwydJBnQX0JV/EVXaNEVkldBJw8fhaKydxBjr+NwIqzj+HkHrxGCGpmBeUcA7Xg4p0dl8LM2H3psf9binU3I2k2uaWoVBFWJTK7p2Nx8otGReXeg8wAy0a6KjsBP4Y9ABwem4Fl2ZBm/Kz5Hd4o0YGGdQ4haVYdInauwchUWrtxCbkuD9vWQo0PxbKmJJTWxJKLafdDuVtGUhJoFpC6OrbZLvLk//m7+BNPTBTo6H2aCr53gc6v2Qm80cuPu5o+HxktknKsmsxRDTBlpQtw3LsSP8joGWS19jHo8DdNBBivbc6t7r5bjLhZ3nMtvPZnTeCSzFh5mj06Z/+QtcpIkP5Dna/Tt7TPzDMvdt5ijR0fd11sWF2f09YbcCRtsLDOwfOetHa/t48mM10rbcsrac8rac8qxueXY6xUdeZWd2bmYzzeN7FxMUQ0uamt8cS2+uA4/KdQcPHHB6Z8tre8FlDUQANm5mCebRnYuprKpDyY6CM+R6LD/9HezUwzBgZ2CtJ3itJ2StJ2KQzvVh3fqjuw0HNlpObLTcWSn68hOz7GdgWO/Ch3/VeT4qwD0J2bnYvovXUx4BxwWPv6rwPFf+Y7t9Bzb6Tiy03Zkp/nITsORnZojO9VHXlMefk166DXJodeEh14LEHH7/+//8txcLlTbJTqXAgywy0YOQsd6VDNwUh5cdIeXvJGb3ogCA0EY4U1vxDVwDDoy6vJEbnoiNz3wl05PeMkjaIaO0dTg3/CSO6yogqAqwZI7vMSqhaBahTu0pBo5CR2jkWqjNYiZXl4VV7XGyeCCI7Dg4DXG3quWRsftGxn+OZtvTjp4AoIaGL45m29OMnAcOkKReK2EI9HjD1NE7pnE2Xfl6MHo9w/0G8cqIOjQCM8eBEYnl0NQOU8jGUqNHpPaox1BzTfsx6vlRo98HIO8k0dxSXQuetdh6ACxpQi8d6iZ7egvhA/Y2yFF3Thn5SokDfuhPe1i9I31bJmZLaVlQ1D2gJklNePyICiPirqT3tSdh3xgSZdYWJMC7W7BZ4E3UnCDovHoQP2BaqqeKdQzhfqBpgPoC7qriR8Vv44h1DGElEzke7kUukDXkQtBUHGHQEcX8DB7IWhvJ4GtGpkcTEcOu4Bv7Wc29ExUd46Vtw4XNpByqwlZFbiLxR3nb7Seymk8llWXdrl6X3rF7rNJlyf56+GZcvTnM/D+bDn6ZkZfez/61ha6d6zdWyZ+qzhC3G3ojaTCRtLynbd27EwRqWz5GFxeFS6vCpePwd2oxt+oxhfU9OQWPG2+vLChrKG/rKG/rJFY1kQsbyKWNxHZEv3hk5fcgfnKZlJlM6myeaCyeaCydbCydfBGeevmBRaUt1a3DcVoH6puH+LLTdif/f0cjyU+dUBy+oDs9AHF6QPq0wc0p1MNp1PN5/db0lMc6Snu9BR/RkogIyWUkRKJ0p+ViRTen5W57juRjJRwRkogIyWQkeJJT3Glp9jTUyznU0zn9uvPpGrOpKrPHFSeOSg/c1B65mBwmHTg7//rU1wOZiDQrXnClxAE0Se5PIVVqHZIgcstfh2jFoLqJpCkPLjoSXT5Ta+wGTo2oY7c9EZuesJL6tGTQN7q0ZNQncJjpB2BTg4YlzyCZghqZoeXPKElNtrlEHR4xOEOLbr5TRB0kmRYdIfkVRDsdWfQ0X8UgqDGycCCk9cIQSf6dWA0XloBQYeGbA6/tAKCKrjzdp+17wgEQVA5Z87msxKOQGkD1qjRZ5F1dma3pecwVMoCLjfjD0MH+40GZJ28bOQABBUzglpbUCsdPgAd7ZToOtOg1F5tdBLdpzT7pnrgvFxh9MrHMRCEGQSpOaUKgqpIWtdE12EIglI6FSINbPGUTplAZR/vOARB5QSQnQ+Xg8t+bciK3jAHrITH50PQvp5RsGKO0bMbKsXBIhfV7oOgFPywGMnUhTUpEAQdrKEZJ0Vguv1gNc3AFAmqUyDo+jhTpB9sPgBBB6ppeoZQz+gvjne5niEcy4SgzP6E12CqnsfoL4agYixfO8YZuQhBFzqlJJq4l0I4CUHHaycbeyZqusbK20aKGgeu16BcntsEbk5LzagEy9+SLk/yV8OmOt9Kjv60xXFbG3jfaC/YreXo6xj9dKLRE5bFxe8WF7/5a9zGMvXEgnrizTtv/fKNgzKto6xpoLiOWFxPLKknlTaSShtJZY0DZY0D5U2DFc0wlS1DlS1DVa3DAEzbCKAa0D5agx2txZL5cuuRs1e94aXaDkpdPPVdY/VdYw0I3eMJNHZTAU0IOKpYbe9++R/mJQJ55mlF5mlV5mlN5mlD1mlD9mlL9mnbtVOOnFPunFO+vFOBvJORvOOR/OMz+cfnNmZ2zZeR/OOR/OOBvJOBvJOe66dcOaccOacsOafM104brp3WZ59WX31XFm0AACAASURBVD2tvnpGnZMeZowf/n/+fjOXI9oGL9D/buJyFezyY71qxOULUZejUWAgCCNY8oSXPOElj5F2BGpmh50Dx8Cb8Av16EmoVuEJrXH5MaoqtOgOwQqv4qMn3RedwUUnrxG4fLIGgmpk8Do7/7x86AR0dFzmj66k04wdghoYnAYII7F6JeXQcYJ61qqmpEEQBB3vVQORT5vc0yLScegwWeiMGJ0RYf8xCIKgQ6P86FI4cjkElfO1tiCHcBQq56ktAXbvUQiCoLRBFjzG7gVj7JMGj0zvGSxOuIqHW7hOWudhKLWfBgbYRysgqKJPZReobPwpwl7oUMMUalM8ubhhPwRBZXg5ssmdebQ1DYLKcLG97ZDxdtPUBH43dLBmIjbkPikS1qRAu5uFYMi98zrwt4EpMgw2H4BSugdF8AK6qLkTvoTtHp+18xhCHYPavQtO7nUTfO0YvjDhsB0FQ0mXJ/nb5Gk6fx45+nYH3re4Mm7zHH3dSXRw61r0TvRu9OavcXu51/XfqCcu3X5zV+oJjcndRmBi2siYdnI1llKDpdRgKbUdY7Wd47Wd43Wd4/VdVITGblpjN60JNwGDn2juobfAMFp6GBKN6+SF3NDMaiuB0UpgtBOY7QRmO2ESpn+qvX8KG6WDuBYWoDOKQu/FvfrCTZVCW3xNX3zNUHLNUHLNUpptK812lGa7yrN8lVmByqxwVWakOnO2JnOuJnOuNnNxYxbWfDlXmzlXkxmpzoxUZ4aqsgJVWb6qLFdFlqMs21KWbSnLNpReM5Res9SWBfn8jJ//05ZcnpCXJ7xPn+Ry5RYwxi43elVmv9bOL4GgNJLF6pmx++ecwQV3aNELD6fHYNdBUJ0CdjksbwUGamaFl9zhJdXoSahOwaqFqvjwtDoyxq4cPgkdpSpR4+pV/AUXvxEMqsNr4qLz5cya6Li6f97un5cOnoCOjEmjC90JA8ejFm+YYNdDRyhiZLJcBYxeT3VNm1wRo2L0IHQML48g96zz+o5CEKxwLb0GgmpGLbxCCCqkxabJp3qOQBAElbDlRg8TdwQ6QGLo3VKdm1QMQcVTEq1LrHUhc+TUzkNQat84mCYfLo/m4lbeFGEPlNYwFbdVLZvZswdKq2PAN63h8iBoX88wMqIuNk6JjUMtB6EU/JDYOAlcTjNMxqbMBdUp0K5mPhhL77wOQdfHgKQHmg5AKd0DMXmD4XQeSLhja+P7iqPD6QmAgfcDmHEdlaeh4Ash6EbdhKSfCi9lT46xJ0my81km0X/MqfT1b0mPN3rCLrAJy+KeMom+2ZB7X35tn9k9fTmvsrC8TqJx40f4LYTJph5GUw+zuRemlTDZ2jfV2jfV1j/V3s+CIbKwJDaWxO6I0jnA6Rzkdg1yuwa5KpP/3OWC6YV73UO87mFe9zAPP8yPIsAPC/AjAvyoAD8q6BkV9IwKesnCBAhkERq9LUTY/fKKQWeuKzfXl1vrSx0Npa6GUk9Tqb+pNNBcGmkpnWkpmWsrWcCWLHUUL3UUr3QU3noWljoKlzqKF7DFc9iS2daSSGtJpLU00FLqby71NJY6GksdLZXurqZZFp0zNNpxKeOZ8/K1jketfXPJDV6V2a+1hQT9xyAIShuwwKk5vwmqVbhDiioo5ma3gXYYamaFllyhJVdoaaoWOnzsJHSMqgTL3flN0NGTh6GTRD282G2qBoJq5M7gomL4JGplu6wSgip56PHzeYff1ncUAjPidk4DBA+hz9l8knIIOjRgtXlnrV4JmMIuY8ND6BAEpZHMJte0iFjfo5w2OmF/4+Tw3edjFdCBPoPObugqH+baghprgEM4CqUNsS1+tVnbkQbtP3gEOjg4ZfIpjOr2koFJg1dm8DBxh4HCGd2HoQNEutYl1jpF5EoIgq6POoRqh5DVt7eQwVfZx7CHoP0ECljjNlQO0m6OzMKJaps9ULanVQQ2kcXlQeC2tEmxsSsPgp2duMZtPBM6WE0zgKwaSukeEOrpQn3H9eIOIR+zF9y3pofnuXMpYDU7sfEAtLebCF5ARViwtI1QBEFg7Rv5CgRdIWjBCyiHHF0ZB46El8iBn23lqsms4QsQBF0h9Y2L8KOU7J3ZBX3MBjwN00kpax0ubCBdryZkVeAuFXecv9F2KrfpyNW6g5cw+9Ir9pwt23U67vmnSZL8lbHeKPqGKfhabb9xuhj9KNU31tsqbvdZGPBA1bV3oqfEz6Dvjz17DRNd6I5y+ZWaw5m1QOdHE9bE5TQBnZ+O6bw1vaAtHZWdXy7pvAzG2+Gb1uDHp+ZW9+ZW9+ZWE/Jq+3rIfIsr9OrugzmFlQarxxNetvnmbb4Fux/G4V90+BcdgUVnYMkZWHIGl5zBJRfMTXcIRXjZEyUzt+z9jz73Rpa9kWVvZMUbWfFFVnzTaG4B/DNrWQUEUIwc+NXbSzdvKaW3ldI7SsldleSuSnJfJXmgkjzUSB5qJY/1osd60Tt60bt60bt60ZNn51296B29CJTzSCd6qJU8VEseqCX31NJ7auk9vToolzL7+i+8+nJgehEiRB/jHUVAGBNsMl+OVjt4gYyxg7VvKrNfawsanGGTipyG/MxRqiq0FHU5GBtfdIccpGPI8nUwSA4dHnbELWSL5d+LYLTcGUy4S01WCUEVvAV7AKxog6OiugFZ0SYdPIG8nzZgtUYnwicwEATV09wzZveMiHQcgo73KJGb0OA40G8AG8jo7CEdoxY6NMy1BTX0GuTEOsRwFg5S8P14NbwfXGxp2+FWnkuic4m5/SkQBEFQSqdcqLZTOw9FDygnKG08pZWCTYP2EyhgM7jBMggqw4Nl6oye3VBaLcPESly/ZpwUGyeJSGXh2NXMZ4rgnWQ6riPC5mP2Rg9o4oG1aW808cCdadgcCMpBu7yLGBUzHHuLruyF3mjk0mCXa2h8DW2s843o968QNDQ+p3IvBO3tJPKjr/d09rCUw4Ntv4oedqI+mpeDMfamgbzavqxK/OXSzvSCNvC0lbTL1akZVfvSK+BHrZxJkuSvlt1nt0JpAnvOJVCGZu95mBTUw1JT0stT0mMp+L4LFfsuVOy/UJmaUZmaUZl6sSr1YtWBi1XgLrWDlzDwQ1muVB+6Un0YPWsO9nzNrj+eXX8cda/aqdymM3nNZ/Kaz+aDifPWWF5eDE+cw3l5effViu6r6LwcWdle13ejvr9riO0MzF0tqN2ddnrHzpQdO1N2vLZvx2v7fvH6/l+8vv+XUV55Y/8rb6S+8kbqK7tSX911AOFXuwEHf7X74M49MPvTTuw/tA6ph07Gcfhk6uGTB2Kc2ojil/7bpZ/BXP75f7v84j9kvviPmS/996sv//esHf8j65f/nP3Lf7n2yr9ce/VnOb/62fVf/fz6zhev73zx+s6X8na+dB3hNfhFLvrNnS/l7HwpZ+dL13a+mP2rF7Ne/fnVV36W+ct/ufLLf7m8458vvfxPGS/9jwsv/uOFF/+x9PWXhrIyZpZuc2QmiLjeHpzPuo4d3igGGWO3hQzOiNk9Y/XO2f3zjsC8K7joDi/F3ZYWWnKFlpQjJ6FjNCVIzdfcdeaK3nHuDK5zT3mUhLvOYND7xlgB8TvGmOGxdGSXmLiN4aI7wYX19rAudhM5vwiCiujwvvHwtjBmv9LkU5h8CioGgjCDRnhXV3AHeXQ/VxfY8U2ocQg10T1h4m42s/EUVg78NJfotjAy5PFu6Ae7oTZ1R2XhDGEcscfFrjcSjn56LI2PRvtcoPJgxjhqsGPMAF3aTxX1kPmdQ5xW4mRjL72ma7yifbS4efBGPfEapudKWfeFIuyZvJYT1xqPZtWlXak5cBGzP6Ny34WKlPQkSf7KAWZ9GpVr2Z+RQBUC0HNU0pgDFzEHLsEcvFR98FL1wcswaZdr0i7XgF1dD12pOZxZCzhyte5oVt3RrPpj2fXHshuOZTccv9Zw4lrjiZzGkzlNJ6NZ+Jm8ljP5LWfzW8/eaD1f0Ha+oD29sP1CERZOx0s6L5V0Xi7rulLenVmOu1qBy6rEZ8VZvO96bV9eXf+NeuKNemJBA6mwcYBIk7hDS8t3Hi3ffbQCuPd45d7jW4D7j1fvv41w+8Hbtx+8g3DnIcK7dx6+e/fhu3ffRPHWk7tvPbm3HvcfAd5blwcIjxHefyoP0bz9THyQwJsbINW5+6liCDyTe4gZx7O6XKC2i3UumdGjMvs1tqDeETaCrVt9c/bAvDO45v7y0BKci4fkVdBJoiGamqNwBtfBEVyII7pVXKLIkf1hYjqftfritoY1e2bMnhkgciPAFTG6YhvC6MGurujdYGJL2/wqi19l8SvNPqXZpzD5FCb2DQjah1fLUPeOS/Qusc4l1rpEWqdIG93cTR29a1wVe/YrV2HlKCwchYUjt7ARkUddPiU1TUmNk5IosMgNMHEPg9fTAbFHv/MxKdCVfv2EEKCLESd1LZrnJfVxrprCUY2yFENMGXFC3DsmwJF5HUPsViKzvoeG6aKUtY0UNg3k1fVlV+Evl3VdKMaeK2g9ldd8Iqfx2LX6o9l1R7JqD19NkuRvgiNZW6FuLUezE6hHOHYNTQPgeE7D8ZyGEzmNMLmNJ3IbT+Y2nrzedPJ60ylAXvPpvObTec1n8lvO5LecvQFoPVfQeq6gLb2wPb2wPb2o/UIxNqMYm1HScbGk41Jp56VSWNtXyruvVuCuVuKyqvDZVT3ZmJ5rmN6c6t7cWgIwd359/40GYkEjqbCRVNQ0UNw8WNwyWNo6VNY2XNY2Ut4+UoEdrewgV3WQMZ0UTNdYdddYTfd4LY5ai6PW99AaeiYaeicawYMc+xjNfYyWfmYLkdlKmmwlTbYNTLUNTGEHWdhBVscQG9A5zO4a4XSNcODnRY1ycaM8HJmHI/PwZD6ewsdT+D0Ufg+F3zsmABDAI6mi9FFFa+mniQHoxJg4EYOEPOF6QkKixzEQewSGdIAuHWDEMQgenYViva2yYWtD4zzN2BqedT92sdYpM7jlJq/KGtDag3pn2OSZtnhnbP45R1TknjVr3wDuyFKMMIwLIZSIM7QYA8nao3a3IwTm7QFE7QCQoM9afbMWgHcWGN3smTZ5olKP7uGqd0b0zrDOGdI5QjpHSGsPaexBjT2osQU1tqDaGtW5xT8MT7xz5EavzOiRGT1Sg0dqcEsQnetcIp1TqHUKNU6hxiHQ2AVqO19t56vtPFVU50obV2nlKiwchYUNkFvYcjNLZmbJzFMIUhMgpnaJkQkQG5liI0NsWB/wWDZE9onK3xzd5kxsAJWvHeOqyWzl0KScRJf0UUV4Cr9zmNM2MNXYR6/FU6s6KWXtw4XNA/n1/Tk1hKwq/OXyroulHRdKsOeL2s8Vtp0rbD1bkCTJ3xbnnkph21rOr6WoHSEdoRiLcAFQgr1Qgs0o6cgo6cgo7cgo7bhY2nmpDOZyeRfgSkU3ILMSl1mJu1qFu1qFz8LgszA92dU916p7rtX05tQQcmsJubV91+v68ur78+r7bzQQbzQSC5pIhU0Dhc0DRS2Dxa1DJa1DpW3DZe0j5diRcuxoRQe5spNc1Ump7h6r7h6rwY3X4ql1PbS6Hlp9L62RQG/sozf1M5r6Gc1EZgtpspU02Tow2T4w1Y6oepjdOcLpGuF2jXK7R7mwoSn8njF+zxi/d1zQOy7oHRcSqMI+mqiPJuoHAN3SJQDYr2ibMmUIQ5PyBIanYEamFDCsGKPIQy5YylF2HGQ0HBUaylq4ajRja+FpxngaaFJqWoMxAaCKSalpSmZiycxshYWjtHJVdr7GIdS5xAa3zORVmH3qqMiN7mmTd8bim7MF5h3BBWd40RVeck/fhEHLO4orvA7OGIswMZEvOEKxBD2q8Hl7cB5Y3BbdvdWKAijc7J01e2fM3hmTd8bknTF6po0eODU3uKcNMYuHdc6w1hHW2kNae1BjD6ptQbUtqLYGVFa/yupXWvwKs09h9snNXpnJKzN6ZUaP1OiRGNwSvVusd4v1LpE+anGtU6BxCDQOWOFqO09l46psXJWVo4QBCmcpLCy5mSWPU/ikzDQpMyX8RpgSIwPGECMqb7pYTxfHmXviWdlY0gi0TRnna8Z4GjJHNcxSDDBl/XRxL1WIo/A7Rjhtg1NNRGZd70Q1bryyi1LaPlLUOlTQPJDfSMyt78upJVyr6c2u7smu7slKkuRvkuytUNObwLW11BIQctDUEXLqCLl1fTD1fbn1fddh+q/X9+c1AIj5jTA3mkg3mkgFzQOAwuaBwpbBopbBotah4rah4rahkvbh0vbh0vaRMuxIGXa0vGO0opNc2UWp7KJUdY9huseqcePV+PGaHmptL62ul1bXO1FPmGjoozf2M5qIjCYis5nEbBmYbBucahucah9iYYfZ2GF25winc5TbNcrtJvNwFB6OwsePCXrGBT3jgl6qkEAV9dFEfRPi/glxP11MZEiIDAmJKSUxpQNM2QBTNjgpH5qSD03Jh1mKYZZihK0cQZsVeJSrInNVFJ6awlPHMlu+ZpyvGedrAVQBgg6wbru3bnNKFxs2IjHvijXsMMw1rNU0JNQ749BtiEjvFOldYoNLrHdJDG6p0SMzexUWn8rmV9uDWmdI74oYPdMm74zFP2cNzNtDC47woiu86I4seaZvemaW45iOEdM8ClcEYSmeRUBM8OFFRwjGHkKl5sF5e3DeFpy3BqIAo/tnLf5Zs2/W7Js1+RCjw1I3uCMGd0TviuhdEZ0rrHWFtc6Q1hnSOIJqO0JAZQsorX6l1a+w+uUWn9zslZm9MpNHZvJITR6J0SMxusUGt8jgEuldIr0LXEOB1iHQOvhaO19j52vsPLWdp7Zz1Tau2sZRWzkqK0dpZSutbKWVpbTAKCwshXlKYZ6SA0yw12WmSZmJGYcRRmpkSo2MOAwIdMmPx4RYTxXqxgQaMk89ylUNseQDk7I+uriXJsSN8zvJ3PZhdsvgVCOJUd9PryXQqnuoVbixShylvItc3kUu6xxNkmQTShE6Rks7RqLE3v/Ja/gjAP5YnkpFNxoKQiUAB1OFG6vCjVXhx6rwYxj8OEJ1z3h1D7W6h1rdS63ppdb00moJMHV9E3V9E/V9E/X99AYivZHIaCQymkjMJhKzeWCyeWCyZXCydWiqdWiqbZjVPszCjrCxI2zsKKeDzO2kcLsovO4xHm6cjxvn46mCHqqghybsnRARJkR9dHE/Q0JkSohMKWlSSpqUDUzJBlnyIZZ8iK0YZitGOMoRjhLWMF9N4aspfM2YQDMu0I4LtVShjirU0UQ6mkg3IdZPiPVI08SQwu0kaDwnZaZJuSnaxppZCoCFpbCwlQhWttLKUSHYAKABTwC07TCaGHw0WgcawaZsomYApHIEY9gTUdoDaFT2gArIzBHSOENaZ1jnihg800bvjNk3a/HPWQJzttC8PbzgjCy5ppfcQOGzy97ZFe/cLRQrMWbXsgzwrME9s+yeuYngmo4nctMZWUJjDy/aw4v28II9BGMLLtiCC9bgvCUAmLME5iz+ObMfqH3W5Js1emcM3hmDd9rgmdZ7Inp3ROeOaF2AsMYZVjtCakdI5Qiq7AGVPaC0BxQ2v8Lql1v9cotPZvHJLF6pxSsxeyUmr8TkkRg9YqNbZHCLDC6hwSU0uAR6l0DvEuicAp2Tr3XwtA6e1sHV2mE0MBy1naO2sQEqgJW1DhYYpYWltEwhKOKY3AJMufk5wpCZ6FLjhMRAFevHhFqKQDPCUw9xlAMsOXFS1seU9EyIcDRh1zi/g8LDkrnto5y2EXbLMKtlmNU8NJUkyUY0oRmcXIfod3/yqv5ogD+czWlNYIQNaAOMInDaRjntADKnnczBkjlYMhdL5mIpXCyF20HhdlB4nWMwXeN8QDdV0E0V4KgCPE2IpwnxE6KeCVEvXdxLFxMYYgJD0seU9DOl/ZNS4qSMOCUjseQDLPkAWzHIVgxxlMMc5TBXOcJTjfLUZL6aLNBQBFqKQDsm1I2LdFSxnirW0ySGCYlhQmqgS40MmZEhNzHlpkmFeVJhnlJYppQWltLKVlnZKitoOTkaG2hOeVo7aGn5Ogdf5+TrnEK9S6iH22ShwSUyuEVGGLHRIzZ6JCY0Xqk5EZkFwZeA3IrGj6BAY4tDaQtshj0RtKwho3/e6J83+ucSMPjWx+ibAz9iCsybAvPm4LwltGANLdrCi7bwkj1y0zG97JxZds2suGdveeZueedXvfOr3vnbvoUo86tr8SLEKf+Wd+6WB4V7Ng7X7ArAObvinAEsw0wvO6ZvOqZvOiI37ZGb9siSLbxkCy9ZQ2gWLcFFS3DBHFwwBxZMAXAp5qMnO2vwzeq9szrvrM4zo/XMaNzTGve02hVRuyJqZ0TlDCudYaUzpHCEFPaQ3B6S24JyW1BmDUitAanVL7H6xRaf2OITmX0is09k8olMXqHRKzR6BQaPwODhGzx8g5uHoHcBuDoXV+fkALROjtbJBmhgWBoHS+NgqWGmYti3x6TK9ueAqbQxFFa6wjIhN9NkZqrUNCY2UESGUYFumK8d4mkGuGoSR9XPUvZNKQiT8t5JeQ9T1sOU4RnSJEk2RhKDLsHRxTi6GDchwk2I4Nd0MY4ujjsM5iev+Y8B+CPanF40kwhyAAFhSk6YkvdNKWBYij6Wop+l6Gcp+9nKfraSyFYS2SoSB2aAqwYMctWDPM0QTzPE0wzztcN87YhAOyLQjQp1o0I9WaQni/QUsWFMbBiTGMclRqrURJWaaDLzhMw8IbfQFRa6wspQWplKG1Nlm1TZQEvF0jjYGgdb6+RonVydi6tz8fRunt7NN3j4Bo/A6BEavUKTV2Tyikw+sdknsfgRpNaA1BqQ2QIyW1BuC8rtQbk9qLCHFI6QEiasdISVzrAqCtzaRwEKAGjX4pkB6NYFqMQ7q/PO6jcGeAfFhi6OSdk/Z/TPQfbplbXYppcTicQzvQKwT6/YZ245Zm45Z285Z1ddc6vu+dvu+VXPwm3vwm3v4h3vwh3vwh3f4t1NAMesiwcwf9uNZu62e+62a241nlsIztlbjtkVx+yKY2bFPoOc1IptetkaWbZGli3hmwBz+KY5tGQKLZmCS6bgoim4aAwuGIMLhsCCITCv98/r/PM635zWN6fxzmm8c2rPrNozq3bPqNwzKteM0jWtdE0rXBG5MyJ3RmSOsMwRltpDEntIYgtJbEGJNSi2BsWWoMgSFFkCQnNAaA4IzAGByc+H8fEARh/X6OUavVwDgodj8HD0Mdh6N1sXBwtB6wJMPSOTmj8rTqbayVQ7GCoHXWWfUNppChtVbh2XWcakFrLEPCo2jYiNIyLjsMgwLDQMCQ1DQsOgQJ8kyaboBvm6Ab5ugK8d4GlJPA2RqyFy1ESOmshVk7gaEk9D4mkH+NoBvm5QgOYnr/mPx1D0D2qLDCOIjICRBMTGUbEphsRElpjIEjOAIjVTpOYxqWVMZhmTWcZllnG5dVxupcqtVIWNprDRFLYJpW1Caacr7XSVnaFyMNQOptrJ1DgnNU7QHIHWjK13gxaPa/ByjV6e0cs3+fgmn8DsF5j9QktAZAmIrEGxNSixBSW2kNQektpDMntY5gjLHRG5M6JwRhSuaWUUlXtG5Z5Re2bUnlkNwDun9c5pfXNa35zON6/3o1kw+IECFgyBBWNg0RhYNAZjmIKLptCSKbRk3hhEMZtgjaBZ3oQ1/k3EPr0CuRbuJjL/FJxRXAt3XQv3wJvuhbvuhbuehXuehXvexXvexfu+pfveKL6lB76bKJbuA7zrsnjfu3jfE+OeG7AQA11bpD7OuTuOKPbZ2wDb7G3bzKptZtU6s2qdBtyyRG5ZIiuWyIo5vGIKr5hCy8bQsjG4bAwuG4LLhuCyPnhTF7ipCyzpAkta/5LGv6j2Lap9iyrvgtKzoPTMKz3zSve8wj2ncM3JXbNy56zMOSt1zEgdMxL7jNg+LbZPi2wRgNAaEVrDgih8S4hvCfEA5iAXYIqDYwxyjAGOMcAGGGKwYPwwepipzfAlMKn7kWBqvUytl6H1MrReusZDV3sm1G6ayk1VuahK17jSOa5wjsE4KPIkSbaCnSyzk2W2UaltVGIdEVuGReYhoWlIaBoSmYbF5hGxZURiHZVayTIbWWanyLfCT35Sfy7GFGtxbsQ4ghLBNa50UdGoXFSViwbjnlDHoKs9dI2HrvEwNB7wVw9aAKRBmNL7pvR+pPkC7RvHCLd7PHOIbw7xLSGBJSywhoXWiBBuRafF9mmJY0bimJE6Z2TOWbkLMKdwzynd80rPvArgXVB7F9S+RY1vUesHLOkCS/rATX3gpj540wAAbX5o2RhaNgELhFfM4RVz5BbAErllmYaJimPVOr1qnVm1zqzaZlZtM7cBdsDsOjgQUG5C49wEtNqeJmXX/F3Ie/OtTfCsw5txLMF4b76JHBMrYfkt3/Ij3/Ij380Ym33c0lredC+96V6EccE8BDgXYjgWHjrmH9gBcw/scw9sc/dtc/etszCW2XuWmXuWmXvmmXvm6bum6bum6bvG6TvG6TuGyB1D5LYhclsfvq0Lr+pCq9rQqja0qgne0gRvqQMr6sCKyr+i8q+ofMtK37LCe1PhvSn33pR7lmSeJal7SepelLgWJa5FsWtB7FwQORdEjnmhY17omBfY5wX2OYF9jm+b49vmeLZZnnWWZ53lAiwzHBRs8wzbPA1gAUwxptAYY0xuSGQtTMOPTBjA0IcZ+jBdH6LrQ3RdaAImOKEL0rRJkjwTAaomQFX7x1W+MaWXonCPylwjUseI1DEqc5LlLorCPab0jKu842o/VROgbQVtYNuVWcNPfn3WAfytrSG0LnQ0+hjgrxjGEGZE/7qZhjDTENfOTBkjoKWCmy/zNNs8wzYjbR3cAPKsszzbHN82x7fPCezzAjtoNhdEzgWxc0HsgttVqXtJ5l6SeW7KPDfl3psK702lb1npWwbNstq/og6saAK3tEHAI5QeywAAGQNJREFUqi60qgut6sO39eHbhvBtQ+SOETB9xxRt/M0zd80zd4EULLP3LLP3rLP3rHP3bSjs8wgP7PMPHAgLD5wLD9ACAiBuWgtiMffim+6lDfGgSbDtGh2j7QkFVp8k8N7nv/v4y39dhy8246OnsX6ZceV/sy4fbcRvvvkwjt8BPkjg1797H+brGJ9//f7nX7+H4slnMO+i+fTrdz/9+p1Pv3rn06/e+eSrdz756m2Y3z7+5LePP47xCOGj3z766LdvffQlzIdfvpnIF29++MWbH3zxcGMevI/wm024/5+C9359/71f30uS5Lly98nnd598fvfdz+688+ntdz69/fYnq48/Xn388erbn9x++5Pb73x6551P77z72d13P7/35PN7T35978mv7z35fAN+DfNTn9RfIPefwm8AmzRTD9//zcMPAHGt3JsffAE3hh9+8daHX7714ZdIs/kIzcdfPv74S9DMvg345Ldvf/Jb0CDDjfOnX73z6VfvfvoVaLGRxvzJZ1+/B4hr7X/33ue/e/9zxAswH8T4BuHDXydYJsZHG7EFGz7FlZuznj3f+/x3UPj+J+H7n4TvfQz44De/54hVVwowSZIkSfIXy+UbmEs3qi7lV13Mq8zIq7hwvTw9pyw9p+xCblnG9fKMvIqLeRUX8ysv5VddvoG5XIC5fCNKPuZyfhUK+P1tVmNjnnrMT34Nk/zVwBGroNm3vpx96wuEz77+n1eL67e+gWsykpGMZCQjGcl4XvH9999/9tlnX3zxxTfffPN7VHz77bfgXyT+8Ic//PGPf/zqq6+uFtdDC+98g+bX3/yv7LLmn/pckpGMZCQjGcn4W4xtuDy7rBm6+f4f0fzm99/nVLT91OeSjGQkIxnJSMbfYmzD5TkVbdDKR9/BfPjdyoffffHt/3u9CvtTn0sykpGMZCQjGX+LsQ2XX6/CQrc+/jc0X/zhP/IwHUihMzMz637Y2vdn4mOLld7k4B9YzjYqA605r5n1Ynv1Wbf8tR+x9apu9LnPpfzndT03r8zzKu2ZfmSTErb9+/0h5axb8vP6z/DDC0lGMpLxI8c2XJ6H6YBWP/kezZd/+I+86k5Q4kZtykYN/SYHrBubNFvP1JytLeeHNNCbnMgPPK/nct0Sjn/u5UPP6XquW8/neL5b/7Um/Mgml+iH/H5/SDk/sJCNXq97vslIRjL+wmM7Lq/uhG5/+u8xPvn3L//wH/nVXdAG+dxGDcS6xzy1xpuXtvVmaPPjt1GZjdrTrRQ1syY2qeGzXrd1y3yO5W9e/7Vlbq+e61bvh5SzlVh7Ugl12GKZ616fH17ORgdssZB1X2+9nGQkIxl/ObGRy//0pz999913f/rTn9a6PL+6C0KLHHH52gZr3eZv7TubN08Jx6/7Ec/UJm5Szia13WI5Gx227fpsUrfNP3eL9fwzlZ/ws08t5Kn13KTCWyxnK3XYYn1++HnNPKf/t+ses71y1j3BZCQjGf8pYl2X//GPf/zuu+9ee+01tM7Xc/knz83l6x6QEAllrvtBz9SWbeXLrZSz7vluoz5bPKNtX7d16/lnKh/9s1u5CE+t50a13Xo5m5f8TPX54eU89+vzw8tZe4JPLSoZyUjGX0isdTkQ+T//8z/v27evoKAA0Xm8yz/5dzSbj7GD2OiddZuSdSOh2HWbpK20aBuVs3ltNy9q3eO33iBuUv/neN3+TOVvVP+EF9soZN2KbV7IJuWgf3x7Ra2tybar9FzK2eiAZ63MTPyvaZPyk5GMZPxlRoLLgch/9rOfpaen43A4KpU6MjICdL6hy1dRLoc2brjXvrlRu/bU2OTIZ2qDnks5Wz/f7dXnuVy3TdroP9/vZRuFPFM9n7WcH3JSG1VmG7X6geWsW59NPmLzQn749UlGMpLxlxAJLv/uu+9ycnK6urrEYrHFYvF6vdPT0x6P57vvvlvf5atrXA5Fx2YT4qmt87M2Z8/6racevO22bIvn+6z12ejN7V23jRzw5/u9bO96br2ez1rOc/z9/pBTey7lPK/KPJfrk4xkJOMnj3Xz8rWxTl6+iiLB5QkxsyY2+tZTq7tJUQnf3V45z1SZrXzEMx2c8OnP8bohP/XUD91e+c/3eq578DZ+KWuP3159Nipk6xVb9/pso5ytlP9MP7W2kB9emWQkIxk/fmzjnrT86q7N7i9PRjKSkYxkJCMZP2Zs8/7ylY/+Dc0X38bt+5aMZCQjGclIRjJ+tNjmvm/LH36H5jfJ/diTkYxkJCMZyfiJYpv7sS+9/8el92L8+l/jnpO27jzl5vXYaIr0qSewvZI3/9baecTnWJ9kJCMZyUhGMp5vbPM5afPv/B7N59/8W3ZZC1LoNsS87jKcdRfgrF1GtHZV0RY/98/h8q0floxkJCMZyUjGc4ltPb+8BZp59DVg+tHX04++/vR3310taUIK3bbLt74cd+vORheY8GKL+t/c5U/tW2zldJKRjGQkIxnJ2HZ8//33q6urJpOJHx8CgQD8i4TBYLh79+5XX311taQJCj/8Mvwgxqdf/c8rRfVIoWj5bcVtWxfzRsdscvwmn4V4fd0fWVvbdeuf9HQykpGMZCTjp43vv//eZDJ9/vnn/ysa4Ibyb7755uuvv/nqq69/+9uvfvObLz7++JP79x+azeavvvrqSlEDFLz/G4TAvd98/Ns/XS6oW2vrjTy3PZdvLQFOtO8WC1n7rbWV2ahWmxe+7hVIRjKSkYxkJON5xffff8/lchGL//GPf/r2D3/4/e+//eyzX3/88af/f3t39xPHdcZxfP+u9H9oo1aV0saO2kSJGsdSpEpREt+lf0F64VynF5Z85/TODn7ZvFLbSTBgsHnHgL3sssAuLBgnmVEvBibDnHOe8zIDs4O/Hx1Zy+yZZ54zS+a3sxB7YXF5dnZhfOLhN9+OTk5OXf7scqfT+cO5C42bD57dzMT5k87u789dSIuqQW563DD/ZWelLE9Na/Uo1qO7Z7n7UwAAlCXJ8vQvd+v1+ltb293u5sLC8szM/PSjmcnJ6f/d/eGrr7578GDityy/87B9NNbvPFxf2Ri8+sbFtKhXNgdkuene2hrV2VQWbp0LZrnpLQIAACchzfLBYNDv7yRB3m5vzMzOT009Hh9/+OOP46Oj95vNb8fGxpMsf/WNi41vpjfT8fX05lp3/49/ez8tmr0PlkPXOk0IaZWctWopoU6uMVMF60EBADhpAVn+p7+/3/h+rp8d2f+/XE477WPTra2Je+SrTzV17x7UvbTNCLEttKQWBACgRAFZ/ue3/tm492T/3pP9e8uHo9X/+bV3PkhDyzHLhY3WLHffrqa4ab61f8fmhQoAAJQuIMtfe+eDxo9rL34bqy/Wd375yz/0/+apS6oFZLn77a+a5dYdy81yghwAcKICsvyv737YGHv269H4ZezZL+3dX19/96O0qOP9rmm+MDNgmu8bi4Yu9dPtava7B3yuyAltBwC8bLJZPhjsDQbJP1W+02q119aeraysLS2tTE5OZ7P89QsfN8ZbUToetKLOIDp34eO0aEC8OU5W3xNY983u4pXl6pe+fZqeIssBACXKZvn+/vPfvfLKW2+++dGHHybj359++sW1a3Nzi9ksP/fepcb4epwdnUF87r1LaVFT5rknX1iWa0M3DTy5B+Ho5WY5AADlymX5O2+//Z/PP//vkVu3bt27dy+X5ecvXmpMrMfZsTGIz793qeFw+yvcsjfNcvtaE1Q9opruwiEcs1xei7ZDAABKF/AZu5TlDcM9cZb73a1ATv0ihPYc6xPkAIDTFPAZuyXLAQDAaSrtM/ZzZDkAAFUo5zP2DlkOAEBFAj9jn1yP08F9OQAAFcpl+b8++eSLa9duHxkdHR0fH9dleTtOxkQ7nmjHG3v5/ydN/ZXvgF9PE+Z7ldL+OltYP6YiXtWERQl9Bq83t3vBXxIs/muGwedNKCgfomBx3wrqLsHfb9r5JX6fZCeX+30C4DQFfsaepria5eo1JewCIVybvK5Z6uSC/WjruJeSFyVsKVLfd8m54/r2INcJWJepH+3uJdZvZsgVhF18T7586NK/T0z7+r7WACoU8He4nr94qTHhk+VZZV3LAi5YRfrR1gm4hgp1TCvNzQmony3lVUT7WN43oI61rFyn+Hlz6dNx7U1F6XWKr9dUv+H5fQJgeARmefoZezKSLFcvEPJ1x0So43WtsTZTYh2XUnId4VzJx3WpX8p5c9nXfb3qMsPqnNx5055A3zpCTd86J7repv9/XwCGx4lkeVJa/lJg2lG+ogl1tNe4gH60dcrtR1uz6XZ5FeoLnbvXkc+A73pNq/atc3LnLbtjcJ9N5dTJReQ6J7fegD4BDI/Ty/LsRrknUx3hAmctZZrseNmS67hf+4Q6pi3p9iLrLVJEu2+ROsKSA+oUP2/yek3NO5ZqKCc/uE5Z6xXqexUBMDwCs/xhO86Ojb1jf++bcCHwukaUUke+gBav43vVc69jus4G1Pe9RssX+oJ1vCoE1Ak4b2WtVzu5rDqmjQHrlUv59gmgcqFZ3okPh0OWl3stC6tj2rdInYAKXnWE0+hbP2DJuYQIK6Kt41vBt07YeStrvXIDReqYNhb5PhFK+b5AACqUZvnu7m6v1+92NzudjfX19qNHs5OT02NjE/fv//Td93dv3/n6WJZPdeKpTjzVjqeOZ3lTkRxG3SIz1QmrJtcPq5ArVbyCtiXhJATU921YnRbWjHZywIqEb4NSzpu2vle3ppZ8m9HWKXG9cn2vJQMYBkmWDwaDJMjb7U6r1X76tDU5OTU2Nn7/h59GR+99/c33t25/pWT5UZCr9+UAAODUHBwcXL16dW1trd/vb21td7vdjY1up7OxsLA4Ozs/Mzv3+PHM9PTjhw+n7969f+XKlaMszwT5YZZfJMsBAKjAwcHB6Ojo1atXL392WR5XrlwZGRk5/hn70eiS5QAAVOTg4GB1dbXVam1ubm5n9Hq95M9Uv9/f2dlxynL1x2zWH7xpJzj+5C94gvtB3X9wGPbTSq+fdDp24sX3JSvYRkBxr134QS+Al0pglk934nS4ZLlpo+lZId6EIDTNdzyoaWPz6DeDhP5dDmedU9Z7F99TpC1bVpYX/2Zw2Zh9liAH8LIpIcuny8tyOW/kakJApgVzD7THEr50WZf8Za4ll5SVD1dkgtCG3Jhv89pzbtrX5VjatbjMB4AzKTDLH23E05lhynL3bMi15XL9FQJAKKXuZerWsTF5LdrGTN36rrrECe4vQUDzLudEfdbrTLo8AICzKjzLs2NzLz5/Mf9vqzScr/uOQSK8M1AJlYX5DSUDtIvSzndcmrwQdbK6r8sEob7LUXyP7lVTaMP9xOY2ujwAgLOqjCw3fMZuui6r12j1alvW9VeOMblP90O4f+lb2Z37Eb1CVH3s3ol8dO2Lrr5e8lEcd5FbAoC6C8zyxxvx4ej8dl+eFtVepk0daK+28vXXMUia5qg27ZXbRZjj0oy6ozth7cKZCZ5gOkvW3YUv1eU4LtZ9CcK+8ioA4CwJzfJu/LgbPz7+GXtaNL1AW7PKOk17uTddneXsUUuZypoeZP80sbYqNODCK+eEcy7UlJcpL1B+Cawb5fbUxkyTC55kAKiXwCyf2Yhn0lvz41kuR6/2sTVd1GdNhGnZyqanchu1KWLtTXjWdBTTErTFHRswvQrasyRv0dZx+bKUjQ3zwq0vovWUAsAZUCjL07GV+d23hu1zV7UJ7TVaaFq+4ps2qr1Z66ihG9ybdoJ7S6b5Qn2XLLe+Xtr6MqEleaO2lHxyhEVZFwIAZ0Zolnfj7NjcN/683CUnhGu0VliQpNlg3VENkuyXjuli2iLElXXVwlHUp0xnXnjQyKzdpQ1H8pnPHtHlFZSfcjxLAHCWBGb5bDdOx0w33jJneUMXjTkuiei4ozzHFG/pl6ZoyfYvp4V1i3Z3+fwIOwrT3PPS2oZvQMrn2auOialzeX52julYBbcDwOkrIctnbVkubDQ9ZZqsho113+wu1ozJTcuFQcDRhX5MsaTle4pMxxVKWSe49Ckf2roxfUqNSfkVdD+Ebzb7bgeA0xeY5XOb8dxmPHs0rFmuvRBb55tmmqJFe2UXkthErWM9osuWZoa2vvv5EbZbF2jtWZ7gdQIb5qV5paPXK+7VKgCcAYFZPr8Zz6Ujc1+uvXBbkyDdyyS3rzXb5CwRDmGqky1iLSUU1x5IPj9yIHnNVw8nFJHPj+OS3c+V0LzQsO+OAHAmhWd5dmTvy9XLd+6QvnGlJUdCQU0lwuXMcKymfUp7NtTjyvWb4rsBazNDm3mmM9BU3pTUa10AUK7QLN+K57cOg3xO+Yx9+PkGnjUVgrMkrLL8lG8zBCEA1Fpgli9sxQuZ+/LtYc1yr7STn/XaRfiowPSJgjDfq8/sdsf7dbIcAGqtQJZnxvbzIc3yhuFXzwLi0yXLhZrWakIwpwVzD7THMuW3Nfhzh3NfCwCgWiVl+bDelzeK3WQ7xr97MJvmCPOtUS1PyK5FLmhdFABgOAVm+eJWnB0u9+XFb/KK3zLKFdTtpvphWW5+Y2DsSlvZZX62f/VPbZ/WRQEAhlNgli9tx4vJ2IoXt+Le82P/T1pCjUn3trR1tNHrv+R8fdOzwlpykx2zPEAurbVxmzs/prcC1rcF6ha1IABgCIVneXYkWa5NhUZQkLvUsZZVg80xq7SxJx/Ffb7ciVqkqctjYS9hmnW+0LA8AQBQocAsX+7Fy714eftw5LI8Fxva/BC4xI972YAcynUu9GOdpu3f1JJpmdmumrpoNxWxTtZuV1en3REAMCQCs/xJL07Hci/uH9izXJtqWtYsbPi8P8jlWUBlazoKcWhqyUSYlq1s2svUubBYU4fWVQAAhkRglq/04mQkce6S5cnxtImS4xhyjisUok59VpthcgVrWZf5LsXV3rSnJXfmtX9q51vrAwCGU2CWr/bj1X68koyjLG+YbyW9stxUx6tCdr6prKmUnJfyfGGa3Ia1mTRrhR2Fc6Wd43JEAMCQK5Tlq/14tXcsyxuGH+s2PbNcW8e3Qjpf+9i0Rd2YHtF0XN8s95om9G/d3Rrb6nz5vULD/LpYa57QfABAaJb3omSs9KKVXtQ/iKz/5mnANdoUtAFF0j+FlLIe171POfXliNUGtrqjfBSXA+XmC8e1Thac3Hztq+n1vQEAZ0Nglq/1o7V+tNqLVvvRaj/aOZ7lQyV7fXcMXdM0OaGtZbV1tI9zG4U4zxXPhZn1TYMp/BzfBFSLLAeARGCWP+1Ha5kx5FkuPM5d+oWN6mN1LzldhLcUwgRt/FsPIcwU5ps2DmdAyksDgJdHeJZnxzBneZYQ0tqN2mwoJeqGM4dMPVTemNZwnkMAOH2BWf5sJzoc/ehpP9qtSZYDAHD2BGZ5aydKRpLoZDkAAFUJzfLdKI3z1k40IMsBAKhIYJav70bJaO1GrV2yHACAygRmeXs3au9G67tR8mDwgiwHAKAaoVk+iA7HbtTejfbIcgAAKhKY5Rt7cTI6g7gziPdexGQ5AACVCM3yQbQxiDpHg/tyAACqUijL00GWAwBQleDP2KPuXtTdizb2yHIAAKoUmOXdoyxPxv7PZDkAANUIzPLNvSgZZDkAANUqmuXJIMsBAKhKYJZv7Ueb6SDLAQCoTniWJ4MsBwCgWsFZHmfH85/5u2IAAKhGYJZvP4+3n5PlAABULzDLO4P46C99S/4OVz5jBwCgGoFZPrEeT6zH4+vx+Hr8YD3uDLgvBwCgGoFZ3lyK7ixFd5ai20vRnaVopcd9OQAA1QjM8tuL0e3F6FYyFqIn22Q5AADVCM/yNMhvkuUAAFQnMMuzQU6WAwBQoQJZvkCWAwBQvUJZfpMsBwCgaqFZngnyEbIcAIDqBGZ5NshH5slyAAAqUyjLR8hyAACqFp7laZCPzEfLZDkAABUpluXz0ch89CVZDgBAdQKzPA1yshwAgGoVzfIvyXIAACoVmuWZICfLAQCoEFkOAEC9hWd5GuQ3yHIAAKoTmOVfkuUAAAyHoll+gywHAKBShbL8BlkOAEDVwrP8RjbLt8hyAACqUUaWz5HlAABUJjDLb5DlAAAMh8JZPkeWAwBQpWJZPkeWAwBQMbIcAIB6K5Dlc7+NJbIcAICKhGZ5Jsivk+UAAFSnaJZfJ8sBAKhUoSy/TpYDAFA1shwAgHoLz/LrZDkAAEMgMMuvk+UAAAwHshwAgHojywEAqDeyHACAeiPLAQCoN7IcAIB6I8sBAKg3shwAgHojywEAqDeyHACAeiPLAQCoN7IcAIB6I8sBAKg3shwAgHojywEAqDeyHACAeiPLAQCoN7IcAIB6I8sBAKg3shwAgHojywEAqDeyHACAeiPLAQCoN7IcAIB6I8sBAKg3shwAgHojywEAqDeyHACAeiPLAQCoN7IcAIB6I8sBAKg3shwAgHojywEAqDeyHACAeiPLAQCoN7IcAIB6I8sBAKg3shwAgHojywEAqDeyHACAeiPLAQCoN7IcAIB6I8sBAKg3shwAgHojywEAqDeyHACAegvL8v8DQooRJ1tBjUAAAAAASUVORK5CYII=" alt="" />
全部程序代码:
#include "stdio.h"
#include "string.h"
#include "time.h"
#include "stdlib.h"
#include "math.h" void main()
{
int m,k=,i,j,l,t,x,y;
int puKe[][]={};
int w[]={};
char point[]={'','','','','','','','','','J','Q','K','A'};
srand(time(NULL));
while(k<)
{
m=rand()%;
x=m/;
y=m%;
if(puKe[x][y]==)
{
continue;
}
puKe[x][y]=;
printf("%c",x+);
if(y==)
{
printf("");
}
printf("%c ",point[y]);
k++;
}
printf("\n按任意键排序....");
getchar(); for(j=;j<;j++)
{
if(puKe[][j]==)
{
printf("%c",);
if(j==)
{
printf("");
}
printf("%c ",point[j]);
}
}
for(j=;j<;j++)
{
if(puKe[][j]==)
{
printf("%c",);
if(j==)
{
printf("");
}
printf("%c ",point[j]);
}
}
for(j=;j<;j++)
{
if(puKe[][j]==)
{
printf("%c",);
if(j==)
{
printf("");
}
printf("%c ",point[j]);
}
}
for(j=;j<;j++)
{
if(puKe[][j]==)
{
printf("%c",);
if(j==)
{
printf("");
}
printf("%c ",point[j]);
}
}
printf("\n按任意键输出最大同花色连续牌....");
getchar(); int count[]={};
int index[]={};
int temp=;
for(i=;i<;i++)
{
for(j=;j<;j++)
{
if(j!=)
{
if(puKe[i][j]== && puKe[i][j-]==)
{
temp++;
}
else
{
if(count[i]<temp)
{
count[i]=temp;
index[i]=j;
}
temp=;
}
}
}
count[i]++;
} int max=;
if(count[]>max)
{
max=count[];
temp=;
}
for(i=;i<;i++)
{
if(count[i]>max)
{
max=count[i];
temp=i;
}
} int a=index[temp]-max;
for(i=;i<max;i++)
{
printf("%c",temp+);
if(a==)
{
printf("");
}
printf("%c ",point[a]); a++;
}
}
当然这只是实现的一种方法,可能园友有更好的实现方法,欢迎指点。。。
C算法编程题(一)扑克牌发牌的更多相关文章
- C算法编程题系列
我的编程开始(C) C算法编程题(一)扑克牌发牌 C算法编程题(二)正螺旋 C算法编程题(三)画表格 C算法编程题(四)上三角 C算法编程题(五)“E”的变换 C算法编程题(六)串的处理 C算法编程题 ...
- C算法编程题(二)正螺旋
前言 上一篇<C算法编程题(一)扑克牌发牌> 写东西前总是喜欢吐槽一些东西,还是多啰嗦几句吧,早上看了一篇博文<谈谈外企涨工资那些事>,里面楼主讲到外企公司包含的五类人,其实不 ...
- C算法编程题(七)购物
前言 上一篇<C算法编程题(六)串的处理> 有些朋友看过我写的这个算法编程题系列,都说你写的不是什么算法,也不是什么C++,大家也给我提出用一些C++特性去实现问题更方便些,在这里谢谢大家 ...
- C算法编程题(六)串的处理
前言 上一篇<C算法编程题(五)“E”的变换> 连续写了几篇有关图形输出的编程题,今天说下有关字符串的处理. 程序描述 在实际的开发工作中,对字符串的处理是最常见的编程任务.本题目即是要求 ...
- C算法编程题(五)“E”的变换
前言 上一篇<C算法编程题(四)上三角> 插几句话,说说最近自己的状态,人家都说程序员经常失眠什么的,但是这几个月来,我从没有失眠过,当然是过了分手那段时期.每天的工作很忙,一个任务接一个 ...
- C算法编程题(四)上三角
前言 上一篇<C算法编程题(三)画表格> 上几篇说的都是根据要求输出一些字符.图案等,今天就再说一个“上三角”,有点类似于第二篇说的正螺旋,输出的字符少了,但是逻辑稍微复杂了点. 程序描述 ...
- C算法编程题(三)画表格
前言 上一篇<C算法编程题(二)正螺旋> 写东西前还是喜欢吐槽点东西,要不然写的真还没意思,一直的想法是在博客园把自己上学和工作时候整理的东西写出来和大家分享,就像前面写的<T-Sq ...
- 面试题(C#算法编程题)
1>用C#写一段选择排序算法,要求用自己的编程风格.答:private int min; public void xuanZhe(int[] list)//选择排序 { ...
- 需掌握 - JAVA算法编程题50题及答案
[程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? //这是一个菲波拉契数列问题publi ...
随机推荐
- 压缩png质量不改变像素
private static byte[] CompressionImage(Bitmap bitmap, Stream fileStream, long quality) { using (Syst ...
- ThreadLocal类详解:原理、源码、用法
以下是本文目录: 1.从数据库连接探究 ThreadLocal 2.剖析 ThreadLocal 源码 3. ThreadLocal 应用场景 4. 通过面试题理解 ThreadLocal 1.从数据 ...
- CSS3总结
1.圆角效果 border-radius: 1px 1px 1px 1px; /* 四个半径值分别是左上角.右上角.右下角和左下角.顺时针 */ 右边半圆 div.right-circle{ hei ...
- pythonchallenge 解谜 Level 7
#-*- coding:utf-8 -*- #代码版本均为python 3.5.1 #Level 7 from PIL import Image x_begin, x_end = 0, 609 y_b ...
- (转)Vsdocman7.2 注册版
Vsdocman是一个优秀的.NET源代码注释编写工具,方便的以GUI的方式设计.NET源代码的注释.我们只是大自然的搬运工:http://download.csdn.net/detail/iamyg ...
- xss其他标签下的js用法总结大全
前段时间我遇到一个问题,就是说普通的平台获取cookie的语句为↓ Default <script src=js地址></script> 1 <scr ...
- php函数类型
静态变量: <?php function calcute(){ static $num =10; $num = $num+2; echo $num."<br>"; ...
- '-[__NSCFString stringFromMD5]: unrecognized selector sent to instance 0x14d89a50'
类型:ios 问题描述: 导入百度地图 然后在模拟器运行可以,真机测试不行: 报错: '-[__NSCFString stringFromMD5]: unrecognized selector sen ...
- ios视频播放器,代码和界面分离
最近业余时间整理的一个ios播放器,界面采用storyboard,以前几乎都是用代码布局,但是用过一个项目storyboard后,就感觉storyboard很靠谱,团队合作版本控制的问题解决其实很简单 ...
- 公司内部培训SQL Server传统索引结构PPT分享
公司内部培训SQL Server传统索引结构PPT分享 下载地址 http://files.cnblogs.com/files/lyhabc/SQLServer%E4%BC%A0%E7%BB%9F%E ...