Chloe and pleasant prizes

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Generous sponsors of the olympiad in which Chloe and Vladik took part allowed all the participants to choose a prize for them on their own. Christmas is coming, so sponsors decided to decorate the Christmas tree with their prizes.

They took n prizes for the contestants and wrote on each of them a unique id (integer from 1 to n). A gift i is characterized by integer ai — pleasantness of the gift. The pleasantness of the gift can be positive, negative or zero. Sponsors placed the gift 1 on the top of the tree. All the other gifts hung on a rope tied to some other gift so that each gift hung on the first gift, possibly with a sequence of ropes and another gifts. Formally, the gifts formed a rooted tree with n vertices.

The prize-giving procedure goes in the following way: the participants come to the tree one after another, choose any of the remaining gifts and cut the rope this prize hang on. Note that all the ropes which were used to hang other prizes on the chosen one are not cut. So the contestant gets the chosen gift as well as the all the gifts that hang on it, possibly with a sequence of ropes and another gifts.

Our friends, Chloe and Vladik, shared the first place on the olympiad and they will choose prizes at the same time! To keep themselves from fighting, they decided to choose two different gifts so that the sets of the gifts that hang on them with a sequence of ropes and another gifts don't intersect. In other words, there shouldn't be any gift that hang both on the gift chosen by Chloe and on the gift chosen by Vladik. From all of the possible variants they will choose such pair of prizes that the sum of pleasantness of all the gifts that they will take after cutting the ropes is as large as possible.

Print the maximum sum of pleasantness that Vladik and Chloe can get. If it is impossible for them to choose the gifts without fighting, print Impossible.

Input

The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of gifts.

The next line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the pleasantness of the gifts.

The next (n - 1) lines contain two numbers each. The i-th of these lines contains integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — the description of the tree's edges. It means that gifts with numbers ui and vi are connected to each other with a rope. The gifts' ids in the description of the ropes can be given in arbirtary order: vi hangs on ui or ui hangs on vi.

It is guaranteed that all the gifts hang on the first gift, possibly with a sequence of ropes and another gifts.

Output

If it is possible for Chloe and Vladik to choose prizes without fighting, print single integer — the maximum possible sum of pleasantness they can get together.

Otherwise print Impossible.

Examples
Input
8
0 5 -1 4 3 2 6 5
1 2
2 4
2 5
1 3
3 6
6 7
6 8
Output
25
Input
4
1 -5 1 1
1 2
1 4
2 3
Output
2
Input
1
-1
Output
Impossible

求两个点的的不相交的最大子树的权值和

树形dp  dp[i]  表示以该点为i节点的子树当中权值最大的

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<string.h>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<cmath>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const double PI=acos(-1.0);
const double eps=0.0000000001;
const ll INF=1e10;
const int N=+;
const ll mod=;
int head[N];
ll dp[N];
int tot;
ll a[N];
int sum[N];
ll ans;
struct node{
int to,next;
}edge[N<<];
void init(){
memset(head,-,sizeof(head));
for(int i=;i<N;i++){
dp[i]=-INF;
}
tot=;
}
void add(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
edge[tot].to=u;
edge[tot].next=head[v];
head[v]=tot++;
}
void DFS(int x,int fa){
for(int i=head[x];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v==fa)continue;
DFS(v,x);
a[x]=a[x]+a[v];
if(dp[x]>-INF)ans=max(ans,dp[x]+dp[v]);
dp[x]=max(dp[x],dp[v]);
}
dp[x]=max(dp[x],a[x]);
}
int main(){
int n;
init();
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%I64d",&a[i]);
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
ans=-INF;
DFS(,);
if(ans==-INF){
cout<<"Impossible"<<endl;
return ;
}
cout<<ans<<endl;
}

CodeForces - 743D Chloe and pleasant prizes的更多相关文章

  1. Codeforces 743D Chloe and pleasant prizes(树型DP)

                                                                D. Chloe and pleasant prizes             ...

  2. codeforces 743D. Chloe and pleasant prizes(树形dp)

    题目链接:http://codeforces.com/contest/743/problem/D 大致思路挺简单的就是找到一个父节点然后再找到其两个字节点总值的最大值. 可以设一个dp[x]表示x节点 ...

  3. Codeforces Round #384 (Div. 2)D - Chloe and pleasant prizes 树形dp

    D - Chloe and pleasant prizes 链接 http://codeforces.com/contest/743/problem/D 题面 Generous sponsors of ...

  4. coderforces #384 D Chloe and pleasant prizes(DP)

    Chloe and pleasant prizes time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  5. Chloe and pleasant prizes

    Chloe and pleasant prizes time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  6. D. Chloe and pleasant prizes

    D. Chloe and pleasant prizes time limit per test 2 seconds memory limit per test 256 megabytes input ...

  7. 【27.85%】【codeforces 743D】Chloe and pleasant prizes

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. Codeforces 743D:Chloe and pleasant prizes(树形DP)

    http://codeforces.com/problemset/problem/743/D 题意:求最大两个的不相交子树的点权和,如果没有两个不相交子树,那么输出Impossible. 思路:之前好 ...

  9. [Codeforces743D][luogu CF743D]Chloe and pleasant prizes[树状DP入门][毒瘤数据]

    这个题的数据真的很毒瘤,身为一个交了8遍的蒟蒻的呐喊(嘤嘤嘤) 个人认为作为一个树状DP的入门题十分合适,同时建议做完这个题之后再去做一下这个题 选课 同时在这里挂一个选取节点型树形DP的状态转移方程 ...

随机推荐

  1. 4星|《超级技术:改变未来社会和商业的技术趋势》:AI对人友好吗

    超级技术:改变未来社会和商业的技术趋势 多位专家或经济学人编辑关于未来的预测,梅琳达·盖茨写了其中一章.在同类书中属于水平比较高的,专家只写自己熟悉的领域,分析与预测有理有据而不仅仅是畅想性质. 以下 ...

  2. (转)Arcgis for JS之Cluster聚类分析的实现

    http://blog.csdn.net/gisshixisheng/article/details/40711075 在做项目的时候,碰见了这样一个问题:给地图上标注点对象,数据是从数据库来的,包含 ...

  3. js获取图片信息(二)-----js获取img的height、width宽高值为0

    首先,创建一个图片对象: var oImg= new Image(); oImg.src = "apple.jpg"; 然后我们打印一下图片的信息: console.log(oIm ...

  4. Python 内置函数 day4

    import random s = 'abczfg' st= {3,4,9,1,8} print(dir(random))#打印模块内的方法,输出模块/变量可以调用的方法 print(dir(s))# ...

  5. 关于JS闭包的一点理解

    通常来讲,闭包通常是指函数内部可以访问到外部作用域的一个过程. 一.广义的定义:任何函数都产生了闭包. 二.狭义的定义:函数内部能访问到其他变量函数的作用域. 我们来看个例子 var a = 10; ...

  6. vue跨域问题解决(生产环境)

    vue跨域问题解决(使用webpack打包的) 配置代理:(config下index.js文件) module.exports = { dev: { env: require('./dev.env') ...

  7. 最小生成树算法Kruskal详解

    要讲Kruskal,我们先来看下面一组样例. 4 5 1 2 3 1 4 5 2 4 7 2 3 6 3 4 8 14 画出来更直观一些,就是上面的这张图. 智商只要不是0的(了解最小生成树是什么的童 ...

  8. Mysql - ORDER BY详解

    0 索引 1 概述 2 索引扫描排序和文件排序简介 3 索引扫描排序执行过程分析 4 文件排序 5 补充说明 6 参考资料 1 概述 MySQL有两种方式可以实现ORDER BY: 1.通过索引扫描生 ...

  9. 字符串匹配的BF算法和KMP算法学习

    引言:关于字符串 字符串(string):是由0或多个字符组成的有限序列.一般写作`s = "123456..."`.s这里是主串,其中的一部分就是子串. 其实,对于字符串大小关系 ...

  10. 解决Eclipse导入项目后Validating验证缓慢的问题

    减少不必要的验证即可 步骤:Window-Preferences-左侧的Validation 如图所示,将Build一列的勾全部去掉就好了. 如需手动校验,右键项目名-选择Validate即可.