1010: [HNOI2008]玩具装箱toy

题目:传送门

题解:

   很明显的一题动态规划...

   f[i]表示1~i的最小花费

   那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-sum[j]+i-(j+1)-L)^2) (j<i)

   但是这样的方程写下来要n^2....50000*50000...GG

   所以我们要用斜率优化这个神器!!!

   设s[i]=sum[i]+i,L+=1;

   那么就开始推吧: 

    f[i]=min(f[i],f[j]+(sum[i]-sum[j]+i-j-1-L)^2)

   f[i]=min(f[i],f[j]+(s[i]-s[j]-L)^2)

   f[j2]+(s[i]-s[j2]-L)^2<=f[j1]+(s[i]-s[j1]-L)^2

   f[j2]+(s[i]-L)^2-2*s[j2]*(s[i]-L)+s[j2]^2<=f[j1]+(s[i]-L)^2-2*s[j1]*(s[i]-L)+s[j1]^2

   f[j2]+s[j2]^2-2*s[j2]*(s[i]-L)<=f[j1]+s[j1]^2-2*s[j1]*(s[i]-L)

   f[j2]-f[j1]+s[j2]^2-s[j1]^2<=2*s[j2]*(s[i]-L)-2*s[j1]*(s[i]-L)

   f[j2]-f[j1]+s[j2]^2-s[j1]^2<=2*s[j2]*(s[i]-L)-2*s[j1]*(s[i]-L)

   (f[j2]-f[j1]+s[j2]^2-s[j1]^2)/(s[j2]-s[j1])<=2*(s[i]-L)

代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
LL L,sum[],s[],f[],list[];
int n;
/*
f[i]=min(f[i],f[j]+(sum[i]-sum[j]+i-j-1-L)^2)
f[i]=min(f[i],f[j]+(s[i]-s[j]-L)^2)
f[j2]+(s[i]-s[j2]-L)^2<=f[j1]+(s[i]-s[j1]-L)^2
f[j2]+(s[i]-L)^2-2*s[j2]*(s[i]-L)+s[j2]^2<=f[j1]+(s[i]-L)^2-2*s[j1]*(s[i]-L)+s[j1]^2
f[j2]+s[j2]^2-2*s[j2]*(s[i]-L)<=f[j1]+s[j1]^2-2*s[j1]*(s[i]-L)
f[j2]-f[j1]+s[j2]^2-s[j1]^2<=2*s[j2]*(s[i]-L)-2*s[j1]*(s[i]-L)
f[j2]-f[j1]+s[j2]^2-s[j1]^2<=2*s[j2]*(s[i]-L)-2*s[j1]*(s[i]-L)
(f[j2]-f[j1]+s[j2]^2-s[j1]^2)/(s[j2]-s[j1])<=2*(s[i]-L)
*/
double slope(int j1,int j2)
{
return (f[j2]-f[j1]+s[j2]*s[j2]-s[j1]*s[j1])/(s[j2]-s[j1]);
}
int main()
{
memset(f,,sizeof(f));
scanf("%d%lld",&n,&L);sum[]=;
LL x;for(int i=;i<=n;i++){scanf("%lld",&x);sum[i]=sum[i-]+x;}
for(int i=;i<=n;i++)s[i]=sum[i]+i;
L++;
int head=,tail=;list[]=;
for(int i=;i<=n;i++)
{
while(head<tail && slope(list[head],list[head+])<=2.0*double(s[i]-L))head++;
int j=list[head];
f[i]=f[j]+(s[i]-s[j]-L)*(s[i]-s[j]-L);
while(head<tail && slope(list[tail],i)<slope(list[tail-],list[tail]))tail--;
list[++tail]=i;
}
printf("%lld\n",f[n]);
return ;
}
 
 

bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)的更多相关文章

  1. BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12451  Solved: 5407[Submit][Status][Discuss] Descript ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  3. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  4. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  5. 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...

  6. bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)

    Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...

  7. [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  8. 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...

  10. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

随机推荐

  1. JDBC、事务和连接池

    一:JDBC 1.什么是JDBC JDBC(Java Data Base Connectivity)SUN公司提供的一套操作数据库的标准规范.具体来讲是一种用于执行SQL语句的Java API,为多种 ...

  2. 51 nod 1693 水群

    1693 水群 基准时间限制:0.4 秒 空间限制:524288 KB 分值: 160  难度:6级算法题  收藏  关注 总所周知,水群是一件很浪费时间的事,但是其实在水群这件事中,也可以找到一些有 ...

  3. 拿到offer过后--大学最后时光最想做的那十件事

    昨天--2014.10.26,历史性的一刻,激动的签了欢聚时代(YY)的前端开发offer,工作地点是我喜欢的珠海(仅仅由于那边有我所向往的海还有自行车队,如今想想都乐开怀了,绕着海边骑单车的感觉真妙 ...

  4. HDOJ find the safest road 1596【最短路变形】

    find the safest road Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. YII 数据库查询

    $userModel = User::Model(); $userModel->count(); $userModel->count($condition); $userModel-> ...

  6. m_Orchestrate learning system---二十七、修改时如何快速找到作用位置

    m_Orchestrate learning system---二十七.修改时如何快速找到作用位置 一.总结 一句话总结:找人,找起作用的位置真的重要,找到就事半功倍了 加载页面的时候观察在f12的e ...

  7. Linux常用命令之rpm安装命令

    转自:http://www.cnblogs.com/datasyman/p/6942557.html 在 Linux 操作系统下,几乎所有的软件均通过RPM 进行安装.卸载及管理等操作.RPM 的全称 ...

  8. 移动端fixed后 横竖屏切换时上部或下部出现空隙问题

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. C++之易混淆知识点一-----static详解

    1.const.mutable与volatile的区别:const表明内存被初始化以后,程序将不能对它进行修改.volatile则表明,即使程序代码没有对内存单元进行修改,但是里面的值也可能会发生变化 ...

  10. LastIndexOf干什么用的

    LastIndexOf的作用是对字符串进行从后往前的检索,找到第一个匹配的位置.比如对字符串“abcdbcd”执行lastindexof("bc")操作,得到的结果是4:4是从前往 ...