1. MNIST数据集介绍


MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的:

MNIST数据库有以下特性:

  • 包含了60000个训练样本集和10000个测试样本集;
  • 分4部分,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集,每个标签的值是0~9之间的数字;
  • 原始图像归一化大小为28*28,以二进制形式保存

2.  Windows+caffe框架下MNIST数据集caffemodel分类模型训练及测试


1. 下载mnist数据


MNIST官网下载链接:http://yann.lecun.com/exdb/mnist/
打开之后可以看到包含红字部分的4个下载包:



下载之后解压,我的caffe安装路径是 D:\Software\Caffe\caffe-master,所以训练数据和测试数据分别解压到了 D:\Software\Caffe\caffe-master\data\mnist\mnist_train_lmdb 和 D:\Software\Caffe\caffe-master\data\mnist\mnist_test_lmdb:


2. 将MNIST数据集转换为lmdb数据文件


caffe直接处理的数据分为两种格式: lmdb和leveldb,两者关系:
  • 它们都是键/值对嵌入式数据库管理系统编程库
  • 虽然lmdb的内存消耗是leveldb的1.1倍,但是lmdb的处理速度比leveldb快10%到15%,另外lmdb允许多种训练模型同时读取同一组数据集。
  • lmdb取代了leveldb成为了caffe默认的数据集生成格式。
 在caffe-master目录下新建一个create_mnist.bat脚本文件,输入以下内容:

.\Build\x64\Debug\convert_mnist_data.exe .\data\mnist\mnist_train_lmdb\train-images.idx3-ubyte .\data\mnist\mnist_train_lmdb\train-labels.idx1-ubyte .\examples\mnist\mnist_train_lmdb
echo.
.\Build\x64\Debug\convert_mnist_data.exe .\data\mnist\mnist_test_lmdb\t10k-images.idx3-ubyte .\data\mnist\mnist_test_lmdb\t10k-labels.idx1-ubyte .\examples\mnist\mnist_test_lmdb
pause

双击运行create_mnist.bat脚本文件,执行结果:



上述指令包括四部分内容,第一部分指定转换mnist数据集的.exe工具,第二部分传入mnist训练数据集的位置,第三部分传入mnist训练数据集的标签,第四部分指定lmdb文件的生成路径.
注意mnist_train_lmdb和mnist_test_lmdb两个文件夹是训练自动生成的,如果原文件下已经有这两个文件夹了,会报错。

执行完成之后会在指定的文件夹目录下生成mdb文件。


3. 计算数据库的均值文件


均值文件实际上就是所有训练样本计算出来的平均值,在目标识别领域使用caffe时,一般都有一个减去均值的操作,这样可以提高训练速度和识别精度。编译后的caffe会在Debug/Release下生成计算均值文件的工具——cmpute_image_mean.exe,caffe里均值文件的数据格式是binaryproto。

在caffe-master目录下,新建一个mnist_mean.bat脚本文件,输入如下内容:

.\Build\x64\Debug\compute_image_mean.exe .\examples\mnist\mnist_train_lmdb .\examples\mnist\mean.binaryproto
pause

双击运行,执行结果:




执行完成之后会在mnist目录下生成mean.binaryproto均值文件:




4. lenet训练参数设置


lenet-5是一个经典的CNN网络模型,最初是在1986年设计的,主要是为了识别手写字体和计算机打印字符,特别是在手写字体识别领域非常成功,曾经被广泛应用在美国银行系统的支票手写字体识别上。

设置lmdb文件路径


打开examples\mnist文件夹下的lenet_train_test.prototxt文件,两处source处输入lmdb文件夹的相对路径:



设置lenet训练参数


lenet训练参数设置是在examples\minst文件夹下的lenet_solver.prototxt文件内。基本设置有如下3个:
  • GPU or CPU: caffe中lenet的训练参数默认是使用GPU,这里修改为CPU;
  • 最大迭代次数: 最大迭代次数默认是10000,一般情况下最大迭代次数越大,训练的模型越准确,训练耗时也越长,这里max_iter的值10000不做修改。
  • caffemodel生成路径:训练完成之后会生成caffemodel分类模型,默认生成路径是在mnist根目录,这里修改为mnist目录下的CaffeModel文件夹内,snapshot_prefix: "examples/mnist/CaffeModel/lenet";
3处修改的对应位置如下:



5. 执行lenet模型训练,生成caffemodel


在caffe-master目录下,新建一个train_mnist.bat脚本文件,输入以下内容:

.\Build\x64\Debug\caffe.exe train --solver=examples/mnist/lenet_solver.prototxt
pause

双击运行,开始训练:




使用CPU,最大迭代次数10000情况下,训练耗时约25min,训练完成之后会输出该模型的识别准确率和损失率:



准确率约为99%,  训练完成后在设置的caffemodel生成路径 examples/minist/CaffeModel文件夹下生成caffemodel模型文件:


一共包含4个文件:
  • lenet_iter_10000.caffemodel 和 lenet_iter_5000.caffemodel: 这两个文件是最终生成的caffemodel分类模型;
  • lenet_iter_10000.solverstate 和 lenet_iter_5000.solverstate : 这两个文件是记录当前训练状态信息文件。在跑训练模型的时候遇到断电等异常情况导致训练中断,再次训练的时候就不必浪费时间从头开始训练,只需要调用 .solverstate文件,从上次训练中断的位置处继续训练即可,具体使用方法略过。

6. 使用caffemodel测试一下mnist测试数据集的分类准确率


这里使用上一步训练生成的caffemodel模型测试一下对mnist测试数据集的分类准确率。
在caffe-master目录下新建一个test-mnist.bat的脚本文件,输入以下内容:

.\Build\x64\Debug\caffe.exe test --model=.\examples\mnist\lenet_train_test.prototxt -weights=.\examples\mnist\CaffeModel\lenet_iter_10000.caffemodel
pause

程序会根据lenet_train_test.prototxt文件里设置的测试数据集的路径自动加载到测试数据,双击运行,完成之后得到测试数据集的识别准确率,约为98.5%:






Windows下mnist数据集caffemodel分类模型训练及测试的更多相关文章

  1. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  2. TensorFlow 下 mnist 数据集的操作及可视化

    from tensorflow.examples.tutorials.mnist import input_data 首先需要连网下载数据集: mnsit = input_data.read_data ...

  3. 关于 Poco::TCPServer框架 (windows 下使用的是 select模型) 学习笔记.

    说明 为何要写这篇文章 ,之前看过阿二的梦想船的<Poco::TCPServer框架解析> http://www.cppblog.com/richbirdandy/archive/2010 ...

  4. 比较windows下的5种IO模型

    看到一个很有意思的解释: 老陈有一个在外地工作的女儿,不能经常回来,老陈和她通过信件联系.他们的信会被邮递员投递到他们的信箱里. 这和Socket模型非常类似.下面我就以老陈接收信件为例讲解Socke ...

  5. fcn模型训练及测试

    1.模型下载 1)下载新版caffe: https://github.com/BVLC/caffe 2)下载fcn代码: https://github.com/shelhamer/fcn.berkel ...

  6. Ubuntu16.04下caffe CPU版的图片训练和测试

    一 数据准备 二.转换为lmdb格式 1.首先,在examples下面创建一个myfile的文件夹,来用存放配置文件和脚本文件.然后编写一个脚本create_filelist.sh,用来生成train ...

  7. windows下php7.1安装redis扩展以及redis测试使用全过程

    最近做项目,需要用到redis相关知识.在Linux下,redis扩展安装起来很容易,但windows下还是会出问题的.因此,特此记下自己实践安装的整个过程,以方便后来人. 一,php中redis扩展 ...

  8. windows下php7.1安装redis扩展以及redis测试使用全过程(转)

    最近做项目,需要用到redis相关知识.在Linux下,redis扩展安装起来很容易,但windows下还是会出问题的.因此,特此记下自己实践安装的整个过程,以方便后来人. 一,php中redis扩展 ...

  9. Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类

    #coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tut ...

随机推荐

  1. Java并发编程(七)ConcurrentLinkedQueue的实现原理和源码分析

    相关文章 Java并发编程(一)线程定义.状态和属性 Java并发编程(二)同步 Java并发编程(三)volatile域 Java并发编程(四)Java内存模型 Java并发编程(五)Concurr ...

  2. poj - 1050 - To the Max(dp)

    题意:一个N * N的矩阵,求子矩阵的最大和(N <= 100, -127 <= 矩阵元素 <= 127). 题目链接:http://poj.org/problem?id=1050 ...

  3. 使用malloc分别分配2KB的空间,然后用realloc调整为6KB的内存空间,打印指针地址

    #include<stdio.h> #include<stdlib.h> #include<string.h> #include<malloc.h> i ...

  4. 闭包(closure)与协程共用时要注意的事情

    闭包是一种能够让你用非常舒服的方式来编程的小技巧,Go也支持闭包. 假设从来没有接触过闭包,想在一開始就弄懂什么是闭包(closure)是非常困难的,就像递归一样,直到你真正写过.用过它,你才干真正的 ...

  5. HDU 1040.As Easy As A+B【排序】【如题(水!水!水!)】【8月24】

    As Easy As A+B Problem Description These days, I am thinking about a question, how can I get a probl ...

  6. Ubuntu 16.04 安装 Open Jdk

    sudo add-apt-repository ppa:openjdk-r/ppa sudo apt-get update sudo apt-get install openjdk-7-jdk

  7. 使用XMLHttpRequest解析json

    不适用内函数或者promise的方式,可以在外部提取到json数据 <!DOCTYPE html> <html lang="en"> <head> ...

  8. bzoj2150: 部落战争(匈牙利)

    2150: 部落战争 题目:传送门 题解: 辣鸡数据..毁我AC率 先说做法,很容易就可以看出是二分图匹配的最小路径覆盖(可能是之前不久刚做过类似的题) 一开始还傻逼逼的去直接连边然后准备跑floyd ...

  9. IntelliJ IDEA中JAVA连接MYSQL

    1.下载mysql包 2.项目中引入mysql包 3.连接数据库,查询结果 看jdbc数据库连接类 package Facade; import java.sql.*; /** * Created b ...

  10. oracle 11g sql优化之行迁移处理(加大BLOCK块)

    行链接 产生原因:当一行数据大于一个数据块,ORACLE会同时分配两个数据块,并在第一个块上登记第二个块的地址,从而形成行链接. 预防方法:针对表空间扩大数据块大小.检查:analyze table ...