题意:

棋盘是一个n×m的矩形,分成n行m列共n*m个小方格。现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 
1.  棋盘的每一个小方格既可以染色(染成C种颜色中的一种) ,也可以不染色。 
2.  棋盘的每一行至少有一个小方格被染色。 
3.  棋盘的每一列至少有一个小方格被染色。 
4.  种颜色都在棋盘上出现至少一次。 
以下是一些将3×3棋盘染成C = 3种颜色(红、黄、蓝)的例子:

请你求出满足要求的不同的染色方案总数。只要存在一个位置的颜色不同,即认为两个染色方案是不同的.

$1\leq n,m,c\leq 400$

题解:

这题。。。$O(nmc)$能过。。。没啥好说的

$ans=\sum\limits_{i=0}^{n}\sum\limits_{j=0}^{m}\sum\limits_{k=0}^{c}(-1)^{i+j+k}\binom{n}{i}\binom{m}{j}\binom{c}{k}(c-k+1)^{(n-i)(m-j)}$

没了。

代码:

 //O(nmc) dafa good!
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 2147483647
#define eps 1e-9
#define mod 1000000007
using namespace std;
typedef long long ll;
int n,m,c,ans=,C[][];
int fastpow(int x,int y){
int ret=;
for(;y;y>>=,x=(ll)x*x%mod){
if(y&)ret=(ll)ret*x%mod;
}
return ret;
}
void add(int &a,int b){
if(a+b>mod)a=a-mod+b;
else a=a+b;
}
void dec(int &a,int b){
if(a-b<)a=a-b+mod;
else a=a-b;
}
int main(){
//freopen("in.txt","r",stdin);
C[][]=C[][]=;
for(int i=;i<=;i++){
C[i][]=;
for(int j=;j<=i;j++){
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
}
scanf("%d%d%d",&n,&m,&c);
for(int k=;k<=c;k++){
int t3=,s=c-k+;
for(int i=n;i>=;i--){
int t2=;
for(int j=m;j>=;j--){
int t1=(ll)C[n][i]*C[m][j]%mod*C[c][k]%mod;
//int t2=fastpow(c-k+1,(n-i)*(m-j));
t1=(ll)t1*t2%mod;
if((i+j+k)&)ans=(ans-t1+mod)%mod;//dec(ans,t1);
else ans=(ans+t1)%mod;//add(ans,t1);
t2=(ll)t2*t3%mod;
}
t3=(ll)t3*s%mod;
}
}
printf("%d",ans);
return ;
}

【BZOJ4487】【JSOI2015】染色问题的更多相关文章

  1. BZOJ4487 [Jsoi2015]染色问题

    BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...

  2. [bzoj4487][Jsoi2015]染色_容斥原理

    染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...

  3. bzoj4487[Jsoi2015]染色问题 容斥+组合

    4487: [Jsoi2015]染色问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 127[Submit][Status ...

  4. 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)

    传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k​ ...

  5. [BZOJ4487][JSOI2015]染色问题(容斥)

    一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式. 三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立. 于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^ ...

  6. BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)

    逐个去除限制.第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数…… 然后是限制二.同样可以容斥,即恰好选n行的方案数=至 ...

  7. 【BZOJ4487】[JSOI2015]染色问题(容斥)

    [BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...

  8. 【bzoj4487】[Jsoi2015]染色问题 容斥原理

    题目描述 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格.现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 1.  棋盘的每一个小方格既可以染色(染成C种颜色中 ...

  9. 【BZOJ4487】[JSOI2015] 染色问题(高维容斥)

    点此看题面 大致题意: 有一个\(n*m\)的矩形,先让你用\(C\)种颜色给它染色.每个格子可染色可不染色,但要求每行每列至少有一个小方格被染色,且每种颜色至少出现一次.求方案数. 高维容斥 显然题 ...

  10. 【题解】JSOI2015染色问题

    好像这个容斥还是明显的.一共有三个要求,可以用组合数先满足一个,再用容斥解决剩下的两个维.(反正这题数据范围这么小,随便乱搞都可以).用 \(a[k][i]\) 表示使用 \(k\) 种颜色,至少有 ...

随机推荐

  1. 再生龙恢复分区后修复引导或debian linux修复引导 三部曲

    先参考 sudo -imkdir /mntmount /dev/sda1 /mntgrub-install --force --no-floppy --root-directory=/mnt /dev ...

  2. java文件名与class关系

    class与文件名没有必要关系但是public class是要绝对保持一致 例如:class test{ public static void main(String args[]){ System. ...

  3. vue封装http请求

    import axios from 'axios' import isObject from 'lodash/isObject' const http = function (api, data = ...

  4. centos7下安装pyspark

    1.安装python 2.安装jdk 3.下载spark:http://spark.apache.org/downloads.html, 下载新版(spark-2.3.1-bin-hadoop2.7. ...

  5. redis 篇 - set

    set 无序集合 sadd key value 127.0.0.1:6379[7]> sadd s 3 (integer) 1 127.0.0.1:6379[7]> smembers s ...

  6. ZOJ 3203 Light Bulb( 三分求极值 )

    链接:传送门 题意: 求影子长度 L 的最大值 思路:如果 x = 0 ,即影子到达右下角时,如果人继续向后走,那么影子一定是缩短的,所以不考虑这种情况.根据图中的辅助线外加相似三角形定理可以得到 L ...

  7. centos7最小化安装图形界面

    1.安装X Window System命令 yum groupinstall "X Window System" 选择y直接安装就可以了 2.安装图形界面软件 GNOME yum ...

  8. Could not find result map java.util.HashMap

    Could not find result map java.util.HashMap 找不到结果图java.util.HashMap MyBatis 找不到返回的 'resultMap'!把resu ...

  9. shiro + maven 的web配置(不整合spring)

    本文采用的是1.4.0版本的shiro 官方中说的1.2之前,和之后的shiro配置分别为: 1.2之前: <filter> <filter-name>iniShiroFilt ...

  10. windows下使用libsvm3.2

    一.官方介绍 libsvm主页:https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html libsvm介绍文档:http://www.csie.ntu. ...