poj--2553--The Bottom of a Graph (scc+缩点)
The Bottom of a Graph
Time Limit : 6000/3000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 1 Accepted Submission(s) : 1
V be a nonempty and finite set, its elements being called vertices (or nodes). Let
E be a subset of the Cartesian product V×V, its elements being called edges. Then
G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length
n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices
(v1,...,vn+1). Then p is called a path from vertex
v1 to vertex vn+1 in G and we say that
vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node
w in G that is reachable from v, v is also reachable from
w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,
bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
G. Each test case starts with an integer number v, denoting the number of vertices of
G=(V,E), where the vertices will be identified by the integer numbers in the set
V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer
e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that
(vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
line.
3 3
1 3 2 3 3 1
2 1
1 2
0
1 3
2#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX 50010
struct node
{
int u,v;
int next;
}edge[MAX];
int low[MAX],dfn[MAX];
int sccno[MAX],head[MAX];
int scc_cnt,dfs_clock,cnt;
bool Instack[MAX];
int m,n;
stack<int>s;
vector<int>G[MAX];
vector<int>scc[MAX];
int in[MAX],out[MAX];
int num[MAX];
void init()
{
memset(head,-1,sizeof(head));
cnt=0;
}
void add(int u,int v)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void getmap()
{
int a,b;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
}
}
void tarjan(int u,int fa)
{
int v;
low[u]=dfn[u]=++dfs_clock;
s.push(u);
Instack[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else if(Instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scc_cnt++;
scc[scc_cnt].clear();
for(;;)
{
v=s.top();
s.pop();
Instack[v]=false;
scc[scc_cnt].push_back(v);
sccno[v]=scc_cnt;
if(v==u) break;
}
}
}
void find(int l,int r)
{
memset(sccno,0,sizeof(sccno));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(Instack,false,sizeof(Instack));
dfs_clock=scc_cnt=0;
for(int i=l;i<=r;i++)
if(!dfn[i])
tarjan(i,-1);
}
void suodian()
{
for(int i=1;i<=scc_cnt;i++)
G[i].clear(),in[i]=out[i]=0;
for(int i=0;i<cnt;i++)
{
int u=sccno[edge[i].u];
int v=sccno[edge[i].v];
if(u!=v)
G[u].push_back(v),out[u]++,in[v]++;
}
}
void solve()
{
int ans=0;
int k=0;
for(int i=1;i<=scc_cnt;i++)
{
if(out[i]==0)
{
for(int j=0;j<scc[i].size();j++)
num[k++]=scc[i][j];
}
}
sort(num,num+k);
for(int i=0;i<k-1;i++)
printf("%d ",num[i]);
printf("%d\n",num[k-1]);
}
int main()
{
while(scanf("%d%d",&n,&m),n)
{
init();
getmap();
find(1,n);
suodian();
solve();
}
return 0;
}
poj--2553--The Bottom of a Graph (scc+缩点)的更多相关文章
- POJ 2553 The Bottom of a Graph(强连通分量)
POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...
- poj 2553 The Bottom of a Graph(强连通分量+缩点)
题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K ...
- poj 2553 The Bottom of a Graph【强连通分量求汇点个数】
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: ...
- POJ 2553 The Bottom of a Graph (强连通分量)
题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...
- POJ 2553 The Bottom of a Graph (Tarjan)
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11981 Accepted: ...
- POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)
Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...
- POJ 2553 The Bottom of a Graph 【scc tarjan】
图论之强连通复习开始- - 题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点 思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不 ...
- poj 2553 The Bottom of a Graph : tarjan O(n) 存环中的点
/** problem: http://poj.org/problem?id=2553 将所有出度为0环中的点排序输出即可. **/ #include<stdio.h> #include& ...
- poj - 2186 Popular Cows && poj - 2553 The Bottom of a Graph (强连通)
http://poj.org/problem?id=2186 给定n头牛,m个关系,每个关系a,b表示a认为b是受欢迎的,但是不代表b认为a是受欢迎的,关系之间还有传递性,假如a->b,b-&g ...
随机推荐
- JQuery 数据加载中禁止操作页面
比较常见的做法,但对我而言是第一次做,记录一下. 为了把找来的loading.gif 的背景色设置为透明,还特意装了quicktime. 有学到一些额外的东西. 先将div及img定义好 <bo ...
- bcg库使用心得两则
作者:朱金灿 来源:http://blog.csdn.net/clever101 最近帮同事解决了两个BCG库的使用问题,特记录下来. 一是在outlook风格停靠栏上创建对话框的做法.代码如下: C ...
- 查看SqlServer连接所使用的端口号
最近一个项目里用到了一个插件,在配置时发现连接数据库使用的是JDBC,输入URL时用到了端口号.印象中在使用Sqlserver时貌似没有提到端口号,在网上查阅了一下,记录下来省的忘了 方法是通过内置的 ...
- 需要知道的TCP/IP三次握手
TCP/IP三次握手是TCP协议中比较重要的一个知识点,但是在很多博客中看到的三次握手的过程图很多都不是很正确.我在google找到了一篇写的非常不错的介绍TCP/IP技术文章期中就有三次握手的讲解, ...
- C# 遍历文本框
#region 文本框指定位置加入回车符 private void button1_Click(object sender, EventArgs e) { #region // 查询首字母位置 //s ...
- 前端开发—HTML
HTML介绍 web服务的本质 import socket sk = socket.socket() sk.bind(("127.0.0.1", 8080)) sk.listen( ...
- UI Testing
UI Test能帮助我们去验证一些UI元素的属性和状态.Apple 在 Xcode 7 中新加入了一套 UI Testing 的工具,其目的就是解决自动化UI测试这个问题.新的 UI Testing ...
- 设置快捷键用sublime直接打开浏览器
1.安装sidebarenhancements插件 ctrl+shift+p —> Install Package —> 找到SideBarEnhancements 2.配置预览快捷键 / ...
- java环境搭建心得
右击此电脑,点击属性, 在打开的电脑系统对话框里发电机i直接点击左侧导航里的[高级系统设置]在打开的电脑系统属性对话框里直接点击下面的[环境变量] 打开环境变量对话框后,直接点击系统变量下面的新建, ...
- C#学习笔记_01_基础内容
01_基础内容 进(位)制 十进制:逢10进1,数字由0-9组成: 二进制:逢2进1,数字由0-1组成: 八进制:逢8进1,数字由0-7组成: 十六进制:逢16进1,数字由0-9和a-f组成: 进制转 ...