洛谷传送门 LOJ传送门

很巧妙的建图啊...刚了$1h$也没想出来,最后看的题解

发现这道题并不类似于我们平时做的网络流题,它是在序列上的,且很难建出来二分图的形。

那就让它在序列上待着吧= =

对于一个区间,左端点向右端点连边,流量为$1$,费用为区间长度

对于一个位置$i$,向$i+1$连边,流量为$K$,费用为$0$

为什么要这么建图呢?

假设有$1$流量流到了位置$i$,有两种情况

1.选择一个从i开始的区间$[i,r]$,这点流量流到了$r$位置。而在$(i,r)$内,这点流量不能用于其它区间,达到了限制区间个数的目的,然后我们获得了$r-i$点收益

2.不选任何区间,流量流到了$i+1$位置,为后面的区间提供流量

然后跑最大费用最大流就行了

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 2005
#define M1 100100
#define ll long long
#define dd double
#define inf 0x3f3f3f3f
using namespace std; int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
}
int n,K,S,T;
struct Edge{
int head[N1],to[M1<<],nxt[M1<<],flow[M1<<],dis[M1<<],cte;
void ae(int u,int v,int F,int D)
{
cte++; to[cte]=v; flow[cte]=F; dis[cte]=D;
nxt[cte]=head[u]; head[u]=cte;
}
}e; int que[M1<<],hd,tl,dis[N1],id[N1],flow[N1],use[N1];
int spfa()
{
int x,j,v;
memset(dis,-,sizeof(dis)); memset(flow,,sizeof(flow)); memset(use,,sizeof(use));
hd=,tl=; que[++tl]=S; dis[S]=; use[S]=; flow[S]=inf;
while(hd<=tl)
{
x=que[hd++];
for(j=e.head[x];j;j=e.nxt[j])
{
v=e.to[j];
if( e.flow[j]> && dis[v]<dis[x]+e.dis[j] )
{
dis[v]=dis[x]+e.dis[j];
flow[v]=min(flow[x],e.flow[j]);
que[++tl]=v; id[v]=j; use[v]=;
}
}
use[x]=;
}
return dis[T]!=-;
}
int EK()
{
int tcost=,mxflow=,x;
while(spfa())
{
mxflow+=flow[T]; tcost+=flow[T]*dis[T];
for(x=T;x!=S;x=e.to[id[x]^])
{
e.flow[id[x]]-=flow[T];
e.flow[id[x]^]+=flow[T];
}
}
return tcost;
} int l[N1],r[N1],len[N1],t[N1<<],cnt;
int main()
{
scanf("%d%d",&n,&K);
int i,j,x,y,ma; e.cte=;
for(i=;i<=n;i++)
{
l[i]=gint(),r[i]=gint()-; if(l[i]>r[i]) swap(l[i],r[i]);
t[++cnt]=l[i]; t[++cnt]=r[i]; len[i]=r[i]-l[i]+;
}
sort(t+,t+cnt+); cnt=unique(t+,t+cnt+)-(t+);
for(i=;i<=n;i++) l[i]=lower_bound(t+,t+cnt+,l[i])-t;
for(i=;i<=n;i++) r[i]=lower_bound(t+,t+cnt+,r[i])-t;
S=; T=cnt+;
for(i=;i<=n;i++) e.ae(l[i],r[i]+,,len[i]), e.ae(r[i]+,l[i],,-len[i]);
for(i=;i<=cnt;i++) e.ae(i,i+,K,), e.ae(i+,i,,); e.ae(S,,K,); e.ae(,S,,);
printf("%d\n",EK());
return ;
}

[网络流24题] 最长k可重区间集问题 (费用流)的更多相关文章

  1. [网络流24题] 最长k可重线段集问题 (费用流)

    洛谷传送门 LOJ传送门 最长k可重区间集问题的加强版 大体思路都一样的,不再赘述,但有一些细节需要注意 首先,坐标有负数,而且需要开$longlong$算距离 但下面才是重点: 我们把问题放到了二维 ...

  2. COGS743. [网络流24题] 最长k可重区间集

    743. [网络流24题] 最长k可重区间集 ★★★   输入文件:interv.in   输出文件:interv.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: «编 ...

  3. [网络流24题]最长k可重区间集[题解]

    最长 \(k\) 可重区间集 题目大意 给定实心直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取开区间集 ...

  4. [网络流24题] 最长k可重区间集

    https://www.luogu.org/problemnew/show/3358 以区间(1,5),(2,6),(7,8)为例 建模方法一: 建模方法二: 离散化区间端点 相当于找k条费用最大的不 ...

  5. [网络流24题] 最长K可重区间集问题

    题目链接:戳我 当时刷24题的时候偷了懒,没有写完,结果落下这道题没有写qwq结果今天考试T3中就有一部分要用到这个思想,蒟蒻我硬是没有想到网络流呜呜呜 最大费用流. 就是我们考虑将问题转化一下,转化 ...

  6. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  7. [网络流24题]最长k可重线段集[题解]

    最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...

  8. 洛谷P3358 最长k可重区间集问题(费用流)

    题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...

  9. 网络流24题-最长k可重线段集问题

    最长k可重线段集问题 时空限制1000ms / 128MB 题目描述 给定平面 x−O−y 上 n 个开线段组成的集合 I,和一个正整数 k .试设计一个算法,从开线段集合 I 中选取出开线段集合 S ...

随机推荐

  1. CentOS 6.9安装过程

    下载: https://wiki.centos.org/Download 安装过程: 分区方案一: 以下为大概的分区步骤,根据实际需要进行分配: 最终分区的配置大小如下所示: 推荐更详细的分区方案,参 ...

  2. POJ 1279

    发现好多半平面交用N^2的增量法都能过诶... #include <iostream> #include <cstdio> #include <cstring> # ...

  3. 【bzoj1001】【狼抓兔子】

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 12719 Solved: 3017 [Submit][ ...

  4. winform设置超时时间

    ); //设置超时时间 var completedTask = await Task.WhenAny(new Task(async () => { );//执行的方法示例这里用延迟代替 }), ...

  5. Ubuntu Tomcat Service

    只需要将%TOMCAT_HOME%/bin/catalina.sh文件拷贝到/etc/init.d/文件夹下,稍作编辑,然后注册成系统服务,是否设置自启动均可. 1. 编辑catalina.sh文件c ...

  6. oc2---类

    // main.m // 第一个OC类,OC中的类其实本质就是一个结构体, 所以p这个指针其实就是指向了一个结构体,创建一个对象就是创建一个结构体指针, #import <Foundation/ ...

  7. C++_class_powerpoint_1.1

    Types and Declarations Boolean Type bool type – boolean , logic type bool literal – true, falseint a ...

  8. 关于打包压缩几种格式(gzip,bzip2,xz)的试验对比

    要通过脚本进行备份,必然将会应用到压缩技术,这里简单针对几个常见的格式进行测验,从而得到一种合适的方式. 这里以一个应用目录做例子: [root@isj-test-5 mnt]$du -sh * 66 ...

  9. SQL使用总结——集合操作函数

    Oracle中集合操作符专门用于合并多条select 语句的结果,包括:UNION, UNION ALL, INTERSECT, MINUS.当使用集合操作符时,必须确保不同查询的列个数和数据类型匹配 ...

  10. javascript 的逻辑中断(短路操作)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...