题意

给出n个数,要求支持单点修改和区间逆序对,强制在线。
n,m<=50000

题解

和不带修改差不多,预处理出smaller[i][j]代表前i块小于j的数的数量,但不能用f[i][j]代表第i块到第j块逆序对的数量,这样不好维护。

我们用f[i][j]代表从第i块选出一个元素与从第j块选出一个元素组成逆序对的数量,维护时最多修改根号n个f数组,查询时用前缀和起到与不带修改时f数组的作用。

其他部分和不带修改时差不多。

然后问题就解决了。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
int n,Block,a[N],block[N],L[],R[],tr1[][],tr[][N],ans,m;
int lowbit(int x){
return x&-x;
}
void add(int id,int x,int w){
for(int i=x;i<=n;i+=lowbit(i)){
tr[id][i]+=w;
}
}
int getsum(int id,int x){
int tmp=;
for(int i=x;i;i-=lowbit(i)){
tmp+=tr[id][i];
}
return tmp;
}
void add1(int id,int x,int w){
for(int i=x;i<=block[n];i+=lowbit(i)){
tr1[id][i]+=w;
}
}
int getsum1(int id,int x){
int tmp=;
for(int i=x;i;i-=lowbit(i)){
tmp+=tr1[id][i];
}
return tmp;
}
int main(){
scanf("%d",&n);Block=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
block[i]=(i-)/Block+;
if(!L[block[i]])L[block[i]]=i;
R[block[i]]=i;
}
for(int i=;i<=block[n];i++)
for(int j=L[i];j<=n;j++){
add(i,a[j],);
}
for(int i=;i<=block[n];i++){
for(int j=L[i];j<=R[i];j++){
add(,a[j],);
add1(i,i,getsum(,n)-getsum(,a[j]));
}
for(int j=R[i]+;j<=n;j++){
add1(i,block[j],getsum(,n)-getsum(,a[j]));
}
for(int j=L[i];j<=R[i];j++){
add(,a[j],-);
}
}
scanf("%d",&m);
while(m--){
int k,x,y;
scanf("%d%d%d",&k,&x,&y);
x^=ans;y^=ans;
if(k==){
for(int i=;i<=block[x]-;i++){
int size=R[i]-L[i]+;
add1(i,block[x],size-(getsum(i,y)-getsum(i+,y))-(size-(getsum(i,a[x])-getsum(i+,a[x]))));
}
for(int i=block[x]+;i<=block[n];i++){
add1(block[x],i,getsum(i,y-)-getsum(i+,y-)-(getsum(i,a[x]-)-getsum(i+,a[x]-)));
}
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],);
add1(block[x],block[x],-(getsum(,n)-getsum(,a[i])));
}
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],-);
}
for(int i=;i<=block[x];i++){
add(i,a[x],-);add(i,y,);
}
a[x]=y;
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],);
add1(block[x],block[x],getsum(,n)-getsum(,a[i]));
}
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],-);
}
}
else{
if(block[x]+>=block[y]){
ans=;
for(int i=x;i<=y;i++){
add(,a[i],);
ans+=getsum(,n)-getsum(,a[i]);
}
for(int i=x;i<=y;i++){
add(,a[i],-);
}
printf("%d\n",ans);
}
else{
ans=;
for(int i=block[x]+;i<=block[y]-;i++){
ans+=getsum1(i,block[y]-);
}
for(int i=x;i<=R[block[x]];i++){
add(,a[i],);
ans+=getsum(,n)-getsum(,a[i]);
ans+=getsum(block[x]+,a[i]-)-getsum(block[y],a[i]-);
}
for(int i=L[block[y]];i<=y;i++){
add(,a[i],);
ans+=getsum(,n)-getsum(,a[i]);
ans+=getsum(block[x]+,n)-getsum(block[y],n)-(getsum(block[x]+,a[i])-getsum(block[y],a[i]));
}
for(int i=x;i<=R[block[x]];i++){
add(,a[i],-);
}
for(int i=L[block[y]];i<=y;i++){
add(,a[i],-);
}
printf("%d\n",ans);
}
}
}
return ;
}

BZOJ 3787 Gty的文艺妹子序列(分块+树状数组+前缀和)的更多相关文章

  1. BZOJ 3787: Gty的文艺妹子序列 [分块 树状数组!]

    传送门 题意:单点修改,询问区间内逆序对数,强制在线 看到加了!就说明花了不少时间.... 如果和上题一样预处理信息,用$f[i][j]$表示块i到j的逆序对数 强行修改的话,每个修改最多会修改$(\ ...

  2. BZOJ3787:Gty的文艺妹子序列(分块,树状数组)

    Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...

  3. BZOJ3787 gty的文艺妹子序列 【树状数组】【分块】

    题目分析: 首先这种乱七八糟的题目就分块.然后考虑逆序对的统计. 一是块内的,二是块之间的,三是一个块内一个块外,四是都在块外. 令分块大小为$S$. 块内的容易维护,单次维护时间是$O(S)$. 块 ...

  4. BZOJ 3787: Gty的文艺妹子序列

    3787: Gty的文艺妹子序列 Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 186  Solved: 58[Submit][Status][Dis ...

  5. 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树

    题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...

  6. BZOJ 3744 Gty的妹子序列 (分块+树状数组+主席树)

    题面传送门 题目大意:给你一个序列,多次询问,每次取出一段连续的子序列$[l,r]$,询问这段子序列的逆序对个数,强制在线 很熟悉的分块套路啊,和很多可持久化01Trie的题目类似,用分块预处理出贡献 ...

  7. 【BZOJ3744】Gty的妹子序列 分块+树状数组

    [BZOJ3744]Gty的妹子序列 Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzo ...

  8. BZOJ 3744 Gty的妹子序列 分块+树状数组

    具体分析见 搬来大佬博客 时间复杂度 O(nnlogn)O(n\sqrt nlogn)O(nn​logn) CODE #include <cmath> #include <cctyp ...

  9. BZOJ 4765 普通计算姬 dfs序+分块+树状数组+好题!!!

    真是道好题...感到灵魂的升华... 按dfs序建树状数组,拿前缀和去求解散块: 按点的标号分块,分成一个个区间,记录区间子树和 的 总和... 具体地,需要记录每个点u修改后,对每一个块i的贡献,记 ...

随机推荐

  1. maven关于pom文件配置详解(转载)

    转载:http://www.cnblogs.com/hafiz <project xmlns="http://maven.apache.org/POM/4.0.0" xmln ...

  2. Spark SQL概念学习系列之Spark SQL概述

    很多人一个误区,Spark SQL重点不是在SQL啊,而是在结构化数据处理! Spark SQL结构化数据处理 概要: 01 Spark SQL概述 02 Spark SQL基本原理 03 Spark ...

  3. APICloud关闭Key Building Resolve

    顶部菜单 --> 扩展 --> keybinding resolver --> toggle

  4. 【算法】Bellman-Ford算法(单源最短路径问题)(判断负圈)

    单源最短路问题是固定一个起点,求它到其他所有点的最短路的问题. 算法: 设 d[i]  表示 起点 s 离点 i 的最短距离. [1.初始化]  固定起点s,对所有的点 , 如果 i =  s ,  ...

  5. 如何把非服务程序(一般的应用程序)注册为Windows服务

    非服务程序:不是标准的服务形式的程序吧,只是普通的应用程序. 1.要实现这个功能要用到微软提供的两个小工具“instsrv.exe”和“srvany.exe”,工具可以从微软下载安装工具包得到:htt ...

  6. Reactive programming-文章解析

    数据源(信息源):静态的数组.动态的流: In computing, reactive programming is a declarative programming paradigm concer ...

  7. [ZJOI2007]捉迷藏 (点分树+堆*3)

    点分树一点都不会啊(还是太菜了) 点分树就是我们点分治构成的新树.满足深度很小. 然后我们就可以在上面瞎维护东西了. 三个大根堆: \(C[u]\)里装的是点分树中u的子树所有点到点分树中u的父亲的距 ...

  8. springMVC接受数组

    var obj = {}; var params = new Array(); var selected1 = $('#datatable').DataTable().rows('.selected' ...

  9. C语言实现简化的正则表达式

    语法: 正则表达式和待匹配字符串都是一行 "^" 标记正则表达式的开始 "$" 标记正则表达式的结束 "*" 匹配前面的子表达式零次或多次 ...

  10. 【BZOJ 1503】[NOI2004]郁闷的出纳员

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 因为所有人工资同时递减. 所以可以设置一个变化值delta. 然后每个人的初始值为k 则把k-delta加入伸展树中. 会发现del ...