BZOJ 3787 Gty的文艺妹子序列(分块+树状数组+前缀和)
题意
给出n个数,要求支持单点修改和区间逆序对,强制在线。
n,m<=50000
题解
和不带修改差不多,预处理出smaller[i][j]代表前i块小于j的数的数量,但不能用f[i][j]代表第i块到第j块逆序对的数量,这样不好维护。
我们用f[i][j]代表从第i块选出一个元素与从第j块选出一个元素组成逆序对的数量,维护时最多修改根号n个f数组,查询时用前缀和起到与不带修改时f数组的作用。
其他部分和不带修改时差不多。
然后问题就解决了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
int n,Block,a[N],block[N],L[],R[],tr1[][],tr[][N],ans,m;
int lowbit(int x){
return x&-x;
}
void add(int id,int x,int w){
for(int i=x;i<=n;i+=lowbit(i)){
tr[id][i]+=w;
}
}
int getsum(int id,int x){
int tmp=;
for(int i=x;i;i-=lowbit(i)){
tmp+=tr[id][i];
}
return tmp;
}
void add1(int id,int x,int w){
for(int i=x;i<=block[n];i+=lowbit(i)){
tr1[id][i]+=w;
}
}
int getsum1(int id,int x){
int tmp=;
for(int i=x;i;i-=lowbit(i)){
tmp+=tr1[id][i];
}
return tmp;
}
int main(){
scanf("%d",&n);Block=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
block[i]=(i-)/Block+;
if(!L[block[i]])L[block[i]]=i;
R[block[i]]=i;
}
for(int i=;i<=block[n];i++)
for(int j=L[i];j<=n;j++){
add(i,a[j],);
}
for(int i=;i<=block[n];i++){
for(int j=L[i];j<=R[i];j++){
add(,a[j],);
add1(i,i,getsum(,n)-getsum(,a[j]));
}
for(int j=R[i]+;j<=n;j++){
add1(i,block[j],getsum(,n)-getsum(,a[j]));
}
for(int j=L[i];j<=R[i];j++){
add(,a[j],-);
}
}
scanf("%d",&m);
while(m--){
int k,x,y;
scanf("%d%d%d",&k,&x,&y);
x^=ans;y^=ans;
if(k==){
for(int i=;i<=block[x]-;i++){
int size=R[i]-L[i]+;
add1(i,block[x],size-(getsum(i,y)-getsum(i+,y))-(size-(getsum(i,a[x])-getsum(i+,a[x]))));
}
for(int i=block[x]+;i<=block[n];i++){
add1(block[x],i,getsum(i,y-)-getsum(i+,y-)-(getsum(i,a[x]-)-getsum(i+,a[x]-)));
}
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],);
add1(block[x],block[x],-(getsum(,n)-getsum(,a[i])));
}
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],-);
}
for(int i=;i<=block[x];i++){
add(i,a[x],-);add(i,y,);
}
a[x]=y;
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],);
add1(block[x],block[x],getsum(,n)-getsum(,a[i]));
}
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],-);
}
}
else{
if(block[x]+>=block[y]){
ans=;
for(int i=x;i<=y;i++){
add(,a[i],);
ans+=getsum(,n)-getsum(,a[i]);
}
for(int i=x;i<=y;i++){
add(,a[i],-);
}
printf("%d\n",ans);
}
else{
ans=;
for(int i=block[x]+;i<=block[y]-;i++){
ans+=getsum1(i,block[y]-);
}
for(int i=x;i<=R[block[x]];i++){
add(,a[i],);
ans+=getsum(,n)-getsum(,a[i]);
ans+=getsum(block[x]+,a[i]-)-getsum(block[y],a[i]-);
}
for(int i=L[block[y]];i<=y;i++){
add(,a[i],);
ans+=getsum(,n)-getsum(,a[i]);
ans+=getsum(block[x]+,n)-getsum(block[y],n)-(getsum(block[x]+,a[i])-getsum(block[y],a[i]));
}
for(int i=x;i<=R[block[x]];i++){
add(,a[i],-);
}
for(int i=L[block[y]];i<=y;i++){
add(,a[i],-);
}
printf("%d\n",ans);
}
}
}
return ;
}
BZOJ 3787 Gty的文艺妹子序列(分块+树状数组+前缀和)的更多相关文章
- BZOJ 3787: Gty的文艺妹子序列 [分块 树状数组!]
传送门 题意:单点修改,询问区间内逆序对数,强制在线 看到加了!就说明花了不少时间.... 如果和上题一样预处理信息,用$f[i][j]$表示块i到j的逆序对数 强行修改的话,每个修改最多会修改$(\ ...
- BZOJ3787:Gty的文艺妹子序列(分块,树状数组)
Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...
- BZOJ3787 gty的文艺妹子序列 【树状数组】【分块】
题目分析: 首先这种乱七八糟的题目就分块.然后考虑逆序对的统计. 一是块内的,二是块之间的,三是一个块内一个块外,四是都在块外. 令分块大小为$S$. 块内的容易维护,单次维护时间是$O(S)$. 块 ...
- BZOJ 3787: Gty的文艺妹子序列
3787: Gty的文艺妹子序列 Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 186 Solved: 58[Submit][Status][Dis ...
- 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树
题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...
- BZOJ 3744 Gty的妹子序列 (分块+树状数组+主席树)
题面传送门 题目大意:给你一个序列,多次询问,每次取出一段连续的子序列$[l,r]$,询问这段子序列的逆序对个数,强制在线 很熟悉的分块套路啊,和很多可持久化01Trie的题目类似,用分块预处理出贡献 ...
- 【BZOJ3744】Gty的妹子序列 分块+树状数组
[BZOJ3744]Gty的妹子序列 Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzo ...
- BZOJ 3744 Gty的妹子序列 分块+树状数组
具体分析见 搬来大佬博客 时间复杂度 O(nnlogn)O(n\sqrt nlogn)O(nnlogn) CODE #include <cmath> #include <cctyp ...
- BZOJ 4765 普通计算姬 dfs序+分块+树状数组+好题!!!
真是道好题...感到灵魂的升华... 按dfs序建树状数组,拿前缀和去求解散块: 按点的标号分块,分成一个个区间,记录区间子树和 的 总和... 具体地,需要记录每个点u修改后,对每一个块i的贡献,记 ...
随机推荐
- 26.boost文件库
#define _CRT_SECURE_NO_WARNINGS #include <boost/filesystem/operations.hpp> #include <boost/ ...
- 记一次"未将对象引用设置到对象的实例"问题的排查过程
最近在给一个老项目做数据对接接口. 背景一 该项目最后更新日期为2006年,使用ASP.NET WebForm..Net2.0.OJB.Castle Avtive Record等.由于是某集团的子系统 ...
- Edge浏览器的几个创意应用
如果你跟我一样也喜欢书法,并且也有surface.那你可以进入我的网页.我给您准备了中国书法纸.信纸.方格子.对联等模板.满足您打发时间,精心抄佛经.诗歌,练书法等.开启Edge浏览器,开启涂鸦模式, ...
- 关于AJAX异步请求的那些事儿(1)
1.什么事AJAX? Asynchronous Javascript And XML:异步的JS和XML,由Google2002年在GoogleSuggest应用提出,目标实现客户端和服务器“同时”运 ...
- Html表单提交到Servlet输出到页面乱码
Html使用的编码是UTF-8编码显示页面,之后使用form表单提交字段到Servlet中,Servlet将利用getParamer方法获得form提交的字段,之后通过Respone中的writer将 ...
- PC比价软件
方法:从百度中搜索比较软件排行,并且根据将搜索时间缩小在一年内.统计前面一页结果网站中的比价软件. 名称 备注 统计 淘淘搜购物助手 淘宝购物比价神器 1 省省比价软件 主流网购商城进行横向比较的智能 ...
- ES6 学习3 函数
1.函数默认参数 在ES5我们给函数定义参数默认值是怎么样? function action(num) { num = num || 200 //当传入num时,num为传入的值 //当没传入参数时, ...
- matlab Time-domain analysis 渐进式或者实时获取仿真值
首先准备一个传递函数sys, 然后使用lsim(sys,u,t,x0)函数(通用的时序分析的函数) u: The input u is an array having as many rows as ...
- JAVA jsp page指令的属性 errorPage 和isErrorPage
>errorPage指定当前页面出现错误的实际响应页面是什么, 其中“/” 表示的是当前WEB应用的根目录 <% page errorPage="/error.jsp" ...
- filezilla server配置为 passive mode
首先要配置filezilla的setting里面的Passive mode setting选项 (2)关键部分,打开win8.1下的防火墙,新建入站规则 注意,要打开80,443端口.已经passiv ...