BZOJ 3787 Gty的文艺妹子序列(分块+树状数组+前缀和)
题意
给出n个数,要求支持单点修改和区间逆序对,强制在线。
n,m<=50000
题解
和不带修改差不多,预处理出smaller[i][j]代表前i块小于j的数的数量,但不能用f[i][j]代表第i块到第j块逆序对的数量,这样不好维护。
我们用f[i][j]代表从第i块选出一个元素与从第j块选出一个元素组成逆序对的数量,维护时最多修改根号n个f数组,查询时用前缀和起到与不带修改时f数组的作用。
其他部分和不带修改时差不多。
然后问题就解决了。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
int n,Block,a[N],block[N],L[],R[],tr1[][],tr[][N],ans,m;
int lowbit(int x){
return x&-x;
}
void add(int id,int x,int w){
for(int i=x;i<=n;i+=lowbit(i)){
tr[id][i]+=w;
}
}
int getsum(int id,int x){
int tmp=;
for(int i=x;i;i-=lowbit(i)){
tmp+=tr[id][i];
}
return tmp;
}
void add1(int id,int x,int w){
for(int i=x;i<=block[n];i+=lowbit(i)){
tr1[id][i]+=w;
}
}
int getsum1(int id,int x){
int tmp=;
for(int i=x;i;i-=lowbit(i)){
tmp+=tr1[id][i];
}
return tmp;
}
int main(){
scanf("%d",&n);Block=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
block[i]=(i-)/Block+;
if(!L[block[i]])L[block[i]]=i;
R[block[i]]=i;
}
for(int i=;i<=block[n];i++)
for(int j=L[i];j<=n;j++){
add(i,a[j],);
}
for(int i=;i<=block[n];i++){
for(int j=L[i];j<=R[i];j++){
add(,a[j],);
add1(i,i,getsum(,n)-getsum(,a[j]));
}
for(int j=R[i]+;j<=n;j++){
add1(i,block[j],getsum(,n)-getsum(,a[j]));
}
for(int j=L[i];j<=R[i];j++){
add(,a[j],-);
}
}
scanf("%d",&m);
while(m--){
int k,x,y;
scanf("%d%d%d",&k,&x,&y);
x^=ans;y^=ans;
if(k==){
for(int i=;i<=block[x]-;i++){
int size=R[i]-L[i]+;
add1(i,block[x],size-(getsum(i,y)-getsum(i+,y))-(size-(getsum(i,a[x])-getsum(i+,a[x]))));
}
for(int i=block[x]+;i<=block[n];i++){
add1(block[x],i,getsum(i,y-)-getsum(i+,y-)-(getsum(i,a[x]-)-getsum(i+,a[x]-)));
}
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],);
add1(block[x],block[x],-(getsum(,n)-getsum(,a[i])));
}
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],-);
}
for(int i=;i<=block[x];i++){
add(i,a[x],-);add(i,y,);
}
a[x]=y;
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],);
add1(block[x],block[x],getsum(,n)-getsum(,a[i]));
}
for(int i=L[block[x]];i<=R[block[x]];i++){
add(,a[i],-);
}
}
else{
if(block[x]+>=block[y]){
ans=;
for(int i=x;i<=y;i++){
add(,a[i],);
ans+=getsum(,n)-getsum(,a[i]);
}
for(int i=x;i<=y;i++){
add(,a[i],-);
}
printf("%d\n",ans);
}
else{
ans=;
for(int i=block[x]+;i<=block[y]-;i++){
ans+=getsum1(i,block[y]-);
}
for(int i=x;i<=R[block[x]];i++){
add(,a[i],);
ans+=getsum(,n)-getsum(,a[i]);
ans+=getsum(block[x]+,a[i]-)-getsum(block[y],a[i]-);
}
for(int i=L[block[y]];i<=y;i++){
add(,a[i],);
ans+=getsum(,n)-getsum(,a[i]);
ans+=getsum(block[x]+,n)-getsum(block[y],n)-(getsum(block[x]+,a[i])-getsum(block[y],a[i]));
}
for(int i=x;i<=R[block[x]];i++){
add(,a[i],-);
}
for(int i=L[block[y]];i<=y;i++){
add(,a[i],-);
}
printf("%d\n",ans);
}
}
}
return ;
}
BZOJ 3787 Gty的文艺妹子序列(分块+树状数组+前缀和)的更多相关文章
- BZOJ 3787: Gty的文艺妹子序列 [分块 树状数组!]
传送门 题意:单点修改,询问区间内逆序对数,强制在线 看到加了!就说明花了不少时间.... 如果和上题一样预处理信息,用$f[i][j]$表示块i到j的逆序对数 强行修改的话,每个修改最多会修改$(\ ...
- BZOJ3787:Gty的文艺妹子序列(分块,树状数组)
Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...
- BZOJ3787 gty的文艺妹子序列 【树状数组】【分块】
题目分析: 首先这种乱七八糟的题目就分块.然后考虑逆序对的统计. 一是块内的,二是块之间的,三是一个块内一个块外,四是都在块外. 令分块大小为$S$. 块内的容易维护,单次维护时间是$O(S)$. 块 ...
- BZOJ 3787: Gty的文艺妹子序列
3787: Gty的文艺妹子序列 Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 186 Solved: 58[Submit][Status][Dis ...
- 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树
题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...
- BZOJ 3744 Gty的妹子序列 (分块+树状数组+主席树)
题面传送门 题目大意:给你一个序列,多次询问,每次取出一段连续的子序列$[l,r]$,询问这段子序列的逆序对个数,强制在线 很熟悉的分块套路啊,和很多可持久化01Trie的题目类似,用分块预处理出贡献 ...
- 【BZOJ3744】Gty的妹子序列 分块+树状数组
[BZOJ3744]Gty的妹子序列 Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzo ...
- BZOJ 3744 Gty的妹子序列 分块+树状数组
具体分析见 搬来大佬博客 时间复杂度 O(nnlogn)O(n\sqrt nlogn)O(nnlogn) CODE #include <cmath> #include <cctyp ...
- BZOJ 4765 普通计算姬 dfs序+分块+树状数组+好题!!!
真是道好题...感到灵魂的升华... 按dfs序建树状数组,拿前缀和去求解散块: 按点的标号分块,分成一个个区间,记录区间子树和 的 总和... 具体地,需要记录每个点u修改后,对每一个块i的贡献,记 ...
随机推荐
- [Avito Code Challenge 2018 G] Magic multisets(线段树)
题目链接:http://codeforces.com/contest/981/problem/G 题目大意: 有n个初始为空的‘魔法’可重集,向一个‘可重集’加入元素时,若该元素未出现过,则将其加入: ...
- (转载)安卓6.0之前的系统 判断app是否有录音权限
卓6.0之前的系统 判断app是否有录音权限 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ...
- BootStrap学习(二)——重写首页之topbar
1.布局容器 帮助文档:http://v3.bootcss.com/css/#overview-container BootStrap需要为页面内容和栅栏系统包裹一个.container容器.提供的两 ...
- 常见Json字符串反序列化处理方式总结
常用来处理Json字符串序列化 反序列化组件:Newtonsoft.Json (https://www.newtonsoft.com/json) 参考资料https://www.cnblogs.com ...
- 服务器搭建域控与SQL Server的AlwaysOn环境过程(一) 搭建域控服务器
0 准备阶段 1. Windows Server 服务器 3台(其中域控服务器配置可降低一个水准,目前博主试用的是:域控服务器--2核4G 数据库服务器(节点)--4核8G ) 2. SQL Serv ...
- 拉格朗日插值&&快速插值
拉格朗日插值 插值真惨 众所周知$k+1$个点可以确定一个$k$次多项式,那么插值就是通过点值还原多项式的过程. 设给出的$k+1$个点分别是$(x_0,y_0),(x_1,y_1),...,(x_k ...
- 微信小程序 刷新页面
一 , 当前页面刷新 第一种方式: //pages 获取到当前页码数 然后执行当前页的onLoad const pages = getCurrentPages() ] perpage.onLoad() ...
- suse 11 sp4 bond 网卡 mode0模式
开启网卡: ifocnfig eth1 up 点亮网卡ethtool eth1 db2:~ # cat /etc/sysconfig/network/ifcfg-bond0 DEVICE='bond0 ...
- 基于LevelDB的高可用ActiveMQ集群
基于LevelDB的高可用ActiveMQ集群 http://donald-draper.iteye.com/blog/2347913
- backtrack5实现局域网DNS欺骗
前言:不得不说Linux下的神器挺多,越来越喜欢Linux了.. . 測试环境 linux backtrack 5 windows xp 先在Linux下开 ...