【Uva 1336】Fixing the Great Wall
【Link】:
【Description】
给你长城上的n个修补点,然后你的位置为x;
你需要依次去这n个点,然后把它们全部修好.
但是修的前后顺序不一样的话,花费不一样.
如果立即把第i个点修好的话,需要c[i]点花费;
每多t秒钟,就要多花费t*d[i]点花费.
你一开始的位置在x,然后你的移动速度为v;
求修完所有的点的最小花费.
【Solution】
区间动态规划
在任意时刻,你当前的位置,和你之前走的位置肯定是在连续的一段区间上的,因为你不可能跳过一个点不修,而去修它旁边的一个点.因为修的时候不用花费时间,是立刻就修好的!
这样;
设f[i][j][p]表示i..j这段区间全都走完了,现在在i..j这段区间的p端的最小花费,p=0表示左边,否则右边;
把那个初始位置X放到n+1的位置;
然后n++
再把1..n按照x升序排序;
从X的位置开始进行DP;
设X的位置是第i个;
则从状态f[i][i][0]开始进行DP;
因为这个状态不能知道走了多长的时间;
所以可以用颜色长度这道题的思路,在进行一步扩展的时候;
比如从i到了i-1;
则t = (x[i]-x[i-1])/v;
把1..i-1和i+1..n这些点的d[i]值的和乘上t加到答案里面去;
(因为那些点的d值肯定是要乘上这个t值的);
下次遇到那些点的时候,就只加上c值就可以了;
这个f值要用double存,不能用整形;
最后输出的时候
用floor输出.
【NumberOf WA】
3
【Reviw】
这类题,因为修理的时间不计,所以最后肯定是形成一段段的区间.
【Code】
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1000;
const ll INF = 1e9+10;
struct abc{
double x,c,d;
};
int n;
double v,X;
double f[N+10][N+10][2],sum[N+10];
abc a[N+100];
int cmp(abc a,abc b){
return a.x < b.x;
}
double get_sum(int x,int y){
if (x>y) return 0;
return sum[y]-sum[x-1];
}
double dfs(int l,int r,int p){
if (f[l][r][p]>0){
return f[l][r][p];
}
if (l==1 && r==n) return 0;
double t1,t2,temp1 = -1,temp2 = -1;
if (p==0){
if (l-1>=1){
t1 = (a[l].x-a[l-1].x)/v;
temp1 = dfs(l-1,r,0) + a[l-1].c + get_sum(1,l-1)*t1
+ get_sum(r+1,n)*t1;
}
if (r+1<=n){
t2 = (a[r+1].x-a[l].x)/v;
temp2 = dfs(l,r+1,1) + a[r+1].c + get_sum(1,l-1)*t2
+ get_sum(r+1,n)*t2;
}
}else{//p==1
if (l-1>=1){
t1 = (a[r].x-a[l-1].x)/v;
temp1 = dfs(l-1,r,0) + a[l-1].c + get_sum(1,l-1)*t1
+ get_sum(r+1,n)*t1;
}
if (r+1<=n){
t2 = (a[r+1].x-a[r].x)/v;
temp2 = dfs(l,r+1,1) + a[r+1].c + get_sum(1,l-1)*t2
+ get_sum(r+1,n)*t2;
}
}
double &key = f[l][r][p];
if (temp1<0) return key = temp2;
if (temp2<0) return key = temp1;
return key = min(temp1,temp2);
}
int main(){
//freopen("F:\\rush.txt","r",stdin);
while (~scanf("%d%lf%lf",&n,&v,&X)){
if (n==0) break;
for (int i = 1;i <= n;i++)
scanf("%lf%lf%lf",&a[i].x,&a[i].c,&a[i].d);
a[n+1].x=X,a[n+1].c = 0,a[n+1].d = 0;
n++;
sort(a+1,a+1+n,cmp);
sum[0] = 0;
for (int i = 1;i <= n;i++)
sum[i] = sum[i-1] + a[i].d;
for (int i = 1;i <= n;i++)
for (int j = 1;j <= n;j++)
f[i][j][0] = f[i][j][1] = -1;
for (int i = 1;i <= n;i++)
if (a[i].d==0){
printf("%.0f\n",floor(dfs(i,i,0)));
break;
}
}
return 0;
}
【Uva 1336】Fixing the Great Wall的更多相关文章
- 【巧妙算法系列】【Uva 11464】 - Even Parity 偶数矩阵
偶数矩阵(Even Parity, UVa 11464) 给你一个n×n的01矩阵(每个元素非0即1),你的任务是把尽量少的0变成1,使得每个元素的上.下.左.右的元素(如果存在的话)之和均为偶数.比 ...
- 【贪心+中位数】【UVa 11300】 分金币
(解方程建模+中位数求最短累积位移) 分金币(Spreading the Wealth, UVa 11300) 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一 ...
- 【UVa 10881】Piotr's Ants
Piotr's Ants Porsition:Uva 10881 白书P9 中文改编题:[T^T][FJUT]第二届新生赛真S题地震了 "One thing is for certain: ...
- 【UVa 116】Unidirectional TSP
[Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【UVa 1347】Tour
[Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【UVA 437】The Tower of Babylon(记忆化搜索写法)
[题目链接]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【uva 1025】A Spy in the Metro
[题目链接]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【Uva 11584】Partitioning by Palindromes
[Link]:https://cn.vjudge.net/contest/170078#problem/G [Description] 给你若干个只由小写字母组成的字符串; 问你,这个字符串,最少能由 ...
- 【Uva 11400】Lighting System Design
[Link]: [Description] 你要构建一个供电系统; 给你n种灯泡来构建这么一个系统; 每种灯泡有4个参数 1.灯泡的工作电压 2.灯泡的所需的电源的花费(只要买一个电源就能供这种灯泡的 ...
随机推荐
- ios 将随意对象存进数据库
要将一个对象存进数据库的blob字段,最好先转为NSData.一个对象要遵守NSCoding协议,实现协议中对应的方法,才干转成NSData. NSData *statusData = [NSKeye ...
- 检测浏览器是否支持range
昨天的滑块建立在Input range这个基础上 这是IOS5.0及以后才支持的,而且在android2.3以下表现也不对 昨天的检测方式 var input = document.createEl ...
- struts2 异常页面乱码问题
在 struts.xml 或者 struts.properties 文件里添加 <constant name="struts.locale" value="zh_C ...
- dedecms后台登录,与后台界面去除多于的样式
http://jingyan.baidu.com/article/597035520f4edc8fc00740f7.html
- UVa 208 Firetruck【回溯】
题意:给出一个n个节点的无向图,以及某个节点k,按照字典序从小到大输出从节点1到节点k的所有路径 看的题解 http://blog.csdn.net/hcbbt/article/details/975 ...
- NodeJS学习笔记 (22)全局对象-global
https://github.com/chyingp/nodejs-learning-guide
- JAVA版本区块链钱包核心代码
Block.java package com.ppblock.blockchain.core; import java.io.Serializable; /** * 区块 * @author yang ...
- caioj 1082 动态规划入门(非常规DP6:火车票)
f[i]表示从起点到第i个车站的最小费用 f[i] = min(f[j] + dist(i, j)), j < i 动规中设置起点为0,其他为正无穷 (貌似不用开long long也可以) #i ...
- C#开发奇技淫巧二:根据dll文件加载C++或者Delphi插件
原文:C#开发奇技淫巧二:根据dll文件加载C++或者Delphi插件 这两天忙着把框架改为支持加载C++和Delphi的插件,来不及更新blog了. 原来的写的框架只支持c#插件,这个好做 ...
- Opencv 三次样条曲线(Cubic Spline)插值
本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/47707679 1.样条曲线简介 样条曲 ...