android 图片特效处理之模糊效果
这篇将讲到图片特效处理的模糊效果。跟前面一样是对像素点进行处理,算法是通用的,但耗时会更长,至于为什么,看了下面的代码你就会明白。
算法:
一、简单算法:将像素点周围八个点包括自身一共九个点的RGB值分别相加后平均,作为当前像素点的RGB值,即可实现效果。
举例:
ABC
DEF
GHI
假如当前点是E,那么会有:
- E.r = (A.r + B.r + C.r + D.r + E.r + F.r + G.r + H.r + I.r) /9 // r表示的是E像素点RGB值的R值
- E.r = (A.r + B.r + C.r + D.r + E.r + F.r + G.r + H.r + I.r) / 9 // r表示的是E像素点RGB值的R值
E像素点的GB值类似。
二、采用高斯模糊:
高斯矩阵:
- int[] gauss = new int[] { 1, 2, 1, 2, 4, 2, 1, 2, 1 };
- int[] gauss = new int[] { 1, 2, 1, 2, 4, 2, 1, 2, 1 };
算法是:将九个点的RGB值分别与高斯矩阵中的对应项相乘的和,然后再除以一个相应的值作为当前像素点的RGB值。
举例:(还是上面的九个点)
假如当前点是E,那么会有:
- int delta = 16;
- E.r =( A.r * gauss[0] + B.r * gauss[1] + C.r * gauss[2] + D.r * gauss[3] + E.r * gauss[4]
+ F.r * gauss[5] + G.r * gauss[6] + H.r * gauss[7] + I.r * gauss[8]) / delta
- int delta = 16;
- E.r =( A.r * gauss[0] + B.r * gauss[1] + C.r * gauss[2] + D.r * gauss[3] + E.r * gauss[4] + F.r * gauss[5] + G.r * gauss[6] + H.r * gauss[7] + I.r * gauss[8]) / delta
E像素点的GB值类似,delta的取值貌似没有规定值,可以自己设置任意值,但要想达到效果,能设的值很少,下面图片是值为16的效果。
处理效果:
原图片:
处理后:
两种处理方式的代码:
- /**
- * 模糊效果
- * @param bmp
- * @return
- */
- private Bitmap blurImage(Bitmap bmp)
- {
- int width = bmp.getWidth();
- int height = bmp.getHeight();
- Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565);
- int pixColor = 0;
- int newR = 0;
- int newG =
0; - int newB = 0;
- int newColor = 0;
- int[][] colors = new
int[9][3]; - for (int i =
1, length = width - 1; i < length; i++) - {
- for (int k =
1, len = height - 1; k < len; k++) - {
- for (int m =
0; m < 9; m++) - {
- int s =
0; - int p = 0;
- switch(m)
- {
- case
0: - s = i - 1;
- p = k - 1;
- break;
- case
1: - s = i;
- p = k - 1;
- break;
- case
2: - s = i + 1;
- p = k - 1;
- break;
- case
3: - s = i + 1;
- p = k;
- break;
- case
4: - s = i + 1;
- p = k + 1;
- break;
- case
5: - s = i;
- p = k + 1;
- break;
- case
6: - s = i - 1;
- p = k + 1;
- break;
- case
7: - s = i - 1;
- p = k;
- break;
- case
8: - s = i;
- p = k;
- }
- pixColor = bmp.getPixel(s, p);
- colors[m][0] = Color.red(pixColor);
- colors[m][1] = Color.green(pixColor);
- colors[m][2] = Color.blue(pixColor);
- }
- for (int m =
0; m < 9; m++) - {
- newR += colors[m][0];
- newG += colors[m][1];
- newB += colors[m][2];
- }
- newR = (int) (newR / 9F);
- newG = (int) (newG / 9F);
- newB = (int) (newB / 9F);
- newR = Math.min(255, Math.max(0, newR));
- newG = Math.min(255, Math.max(0, newG));
- newB = Math.min(255, Math.max(0, newB));
- newColor = Color.argb(255, newR, newG, newB);
- bitmap.setPixel(i, k, newColor);
- newR = 0;
- newG = 0;
- newB = 0;
- }
- }
- return bitmap;
- }
- /**
- * 柔化效果(高斯模糊)(优化后比上面快三倍)
- * @param bmp
- * @return
- */
- private Bitmap blurImageAmeliorate(Bitmap bmp)
- {
- long start = System.currentTimeMillis();
- // 高斯矩阵
- int[] gauss =
new int[] {
1, 2,
1, 2,
4, 2,
1, 2,
1 }; - int width = bmp.getWidth();
- int height = bmp.getHeight();
- Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565);
- int pixR =
0; - int pixG = 0;
- int pixB =
0; - int pixColor =
0; - int newR =
0; - int newG = 0;
- int newB =
0; - int delta =
16; // 值越小图片会越亮,越大则越暗 - int idx =
0; - int[] pixels = new
int[width * height]; - bmp.getPixels(pixels, 0, width,
0, 0, width, height); - for (int i =
1, length = height - 1; i < length; i++) - {
- for (int k =
1, len = width - 1; k < len; k++) - {
- idx = 0;
- for (int m = -1; m <=
1; m++) - {
- for (int n = -1; n <=
1; n++) - {
- pixColor = pixels[(i + m) * width + k + n];
- pixR = Color.red(pixColor);
- pixG = Color.green(pixColor);
- pixB = Color.blue(pixColor);
- newR = newR + (int) (pixR * gauss[idx]);
- newG = newG + (int) (pixG * gauss[idx]);
- newB = newB + (int) (pixB * gauss[idx]);
- idx++;
- }
- }
- newR /= delta;
- newG /= delta;
- newB /= delta;
- newR = Math.min(255, Math.max(0, newR));
- newG = Math.min(255, Math.max(0, newG));
- newB = Math.min(255, Math.max(0, newB));
- pixels[i * width + k] = Color.argb(255, newR, newG, newB);
- newR = 0;
- newG = 0;
- newB = 0;
- }
- }
- bitmap.setPixels(pixels, 0, width,
0, 0, width, height); - long end = System.currentTimeMillis();
- Log.d("may",
"used time="+(end - start)); - return bitmap;
- }
- /**
- * 模糊效果
- * @param bmp
- * @return
- */
- private Bitmap blurImage(Bitmap bmp)
- {
- int width = bmp.getWidth();
- int height = bmp.getHeight();
- Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565);
- int pixColor = 0;
- int newR = 0;
- int newG = 0;
- int newB = 0;
- int newColor = 0;
- int[][] colors = new int[9][3];
- for (int i = 1, length = width - 1; i < length; i++)
- {
- for (int k = 1, len = height - 1; k < len; k++)
- {
- for (int m = 0; m < 9; m++)
- {
- int s = 0;
- int p = 0;
- switch(m)
- {
- case 0:
- s = i - 1;
- p = k - 1;
- break;
- case 1:
- s = i;
- p = k - 1;
- break;
- case 2:
- s = i + 1;
- p = k - 1;
- break;
- case 3:
- s = i + 1;
- p = k;
- break;
- case 4:
- s = i + 1;
- p = k + 1;
- break;
- case 5:
- s = i;
- p = k + 1;
- break;
- case 6:
- s = i - 1;
- p = k + 1;
- break;
- case 7:
- s = i - 1;
- p = k;
- break;
- case 8:
- s = i;
- p = k;
- }
- pixColor = bmp.getPixel(s, p);
- colors[m][0] = Color.red(pixColor);
- colors[m][1] = Color.green(pixColor);
- colors[m][2] = Color.blue(pixColor);
- }
- for (int m = 0; m < 9; m++)
- {
- newR += colors[m][0];
- newG += colors[m][1];
- newB += colors[m][2];
- }
- newR = (int) (newR / 9F);
- newG = (int) (newG / 9F);
- newB = (int) (newB / 9F);
- newR = Math.min(255, Math.max(0, newR));
- newG = Math.min(255, Math.max(0, newG));
- newB = Math.min(255, Math.max(0, newB));
- newColor = Color.argb(255, newR, newG, newB);
- bitmap.setPixel(i, k, newColor);
- newR = 0;
- newG = 0;
- newB = 0;
- }
- }
- return bitmap;
- }
- /**
- * 柔化效果(高斯模糊)(优化后比上面快三倍)
- * @param bmp
- * @return
- */
- private Bitmap blurImageAmeliorate(Bitmap bmp)
- {
- long start = System.currentTimeMillis();
- // 高斯矩阵
- int[] gauss = new int[] { 1, 2, 1, 2, 4, 2, 1, 2, 1 };
- int width = bmp.getWidth();
- int height = bmp.getHeight();
- Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565);
- int pixR = 0;
- int pixG = 0;
- int pixB = 0;
- int pixColor = 0;
- int newR = 0;
- int newG = 0;
- int newB = 0;
- int delta = 16; // 值越小图片会越亮,越大则越暗
- int idx = 0;
- int[] pixels = new int[width * height];
- bmp.getPixels(pixels, 0, width, 0, 0, width, height);
- for (int i = 1, length = height - 1; i < length; i++)
- {
- for (int k = 1, len = width - 1; k < len; k++)
- {
- idx = 0;
- for (int m = -1; m <= 1; m++)
- {
- for (int n = -1; n <= 1; n++)
- {
- pixColor = pixels[(i + m) * width + k + n];
- pixR = Color.red(pixColor);
- pixG = Color.green(pixColor);
- pixB = Color.blue(pixColor);
- newR = newR + (int) (pixR * gauss[idx]);
- newG = newG + (int) (pixG * gauss[idx]);
- newB = newB + (int) (pixB * gauss[idx]);
- idx++;
- }
- }
- newR /= delta;
- newG /= delta;
- newB /= delta;
- newR = Math.min(255, Math.max(0, newR));
- newG = Math.min(255, Math.max(0, newG));
- newB = Math.min(255, Math.max(0, newB));
- pixels[i * width + k] = Color.argb(255, newR, newG, newB);
- newR = 0;
- newG = 0;
- newB = 0;
- }
- }
- bitmap.setPixels(pixels, 0, width, 0, 0, width, height);
- long end = System.currentTimeMillis();
- Log.d("may", "used time="+(end - start));
- return bitmap;
- }
android 图片特效处理之模糊效果的更多相关文章
- android图片特效处理之模糊效果
这篇将讲到图片特效处理的模糊效果.跟前面一样是对像素点进行处理,算法是通用的,但耗时会更长,至于为什么,看了下面的代码你就会明白. 算法: 一.简单算法:将像素点周围八个点包括自身一共九个点的RGB值 ...
- android 图片特效处理之 光晕效果
这篇将讲到图片特效处理的图片光晕效果.跟前面一样是对像素点进行处理,本篇实现的思路可参见android图像处理系列之九--图片特效处理之二-模糊效果和android图像处理系列之十三--图片特效处理之 ...
- android 图片特效处理之光晕效果
这篇将讲到图片特效处理的图片光晕效果.跟前面一样是对像素点进行处理,本篇实现的思路可参见android图像处理系列之九--图片特效处理之二-模糊效果和android图像处理系列之十三--图片特效处理之 ...
- android图片特效处理之光晕效果
这篇将讲到图片特效处理的图片光晕效果.跟前面一样是对像素点进行处理,本篇实现的思路可参见android图像处理系列之九--图片特效处理之二-模糊效果和android图像处理系列之十三--图片特效处理之 ...
- android 图片特效处理之 图片叠加
这篇将讲到图片特效处理的图片叠加效果.跟前面一样是对像素点进行处理,可参照前面的android图像处理系列之七--图片涂鸦,水印-图片叠加和android图像处理系列之六--给图片添加边框(下)-图片 ...
- android 图片特效处理之图片叠加
这篇将讲到图片特效处理的图片叠加效果.跟前面一样是对像素点进行处理,可参照前面的android图像处理系列之七--图片涂鸦,水印-图片叠加和android图像处理系列之六--给图片添加边框(下)-图片 ...
- android 图片特效处理之怀旧效果
图片特效处理系列将介绍图片的像素点的特效处理,这些物资注重的是原理.也就是说只要你知道这些算法不管是C++,VB,C#,Java都可以做出相同的特效.下面将介绍图片怀旧效果的算法.算法如下: 上面公式 ...
- android图片特效处理之怀旧效果
图片特效处理系列将介绍图片的像素点的特效处理,这些物资注重的是原理.也就是说只要你知道这些算法不管是C++,VB,C#,Java都可以做出相同的特效.下面将介绍图片怀旧效果的算法.算法如下: 上面公式 ...
- android图片特效处理之图片叠加
这篇将讲到图片特效处理的图片叠加效果.跟前面一样是对像素点进行处理,可参照前面的android图像处理系列之七--图片涂鸦,水印-图片叠加和android图像处理系列之六--给图片添加边框(下)-图片 ...
随机推荐
- PostgreSQL Replication之第四章 设置异步复制(4)
4.4 基于流和基于文件的恢复 生活并不总只是黑色或白色:有时也会有一些灰色色调.对于某些情况下,流复制可能恰到好处.在另一些情况下,基于文件复制和PITR是您所需要的.但是也有许多情况下,您既需要流 ...
- PHP接收GET中文参数乱码的原因及解决方案
方案1: $str = iconv("gb2312","utf-8",$str); 方案2: mb_convert_encoding($str, "u ...
- WLAN 基础架构功能
WLAN 基础架构功能 Android WLAN 框架可帮助用户连接到优质 WLAN 网络(在有可用 WLAN 网络且需要连接到这类网络的情况下).Android 可通过多种方式来实现这一点: 打开网 ...
- javascript--记忆函数
function memory(val) { if(!memory.cached) {//判断是否创建了缓存 memory.cached = {}; } if(memory.cached[val] ! ...
- docker切换默认镜像源
docker切换默认镜像源 基于 debian8 默认安装的 docker 镜像源是在国外,pull 镜像的时候奇慢无比,需要自己手动切换成国内的镜像源. 1. 修改配置文件 docker 默认的 ...
- bzoj1293 [SCOI2009] 生日礼物 队列
题目描述 小西有一条很长的彩带,彩带上挂着各式各样的彩珠.已知彩珠有N个,分为K种.简单的说,可以将彩带考虑为x轴,每一个彩珠有一个对应的坐标(即位置).某些坐标上可以没有彩珠,但多个彩珠也可以出现在 ...
- linux指令快速复制粘贴[龟速更新中]
由于有经常碰到要输入linux指令,但是却忘记了的情况.在家里我把常用的命令放到Xshell的快速命令集,但是在很多情况下不在家,可能用的他人电脑,以及在非Win环境下使用ssh时没有xshell使用 ...
- caioj 1081 动态规划入门(非常规DP5:观光游览)
这道题和前面的分组的题有点像 就是枚举最后一组的长度. 然后组数可以在第一层循环也可以在第二层循环 我自己的话就统一一下在第一层循环吧 然后这道题题意我一直没理解清楚,浪费了很多时间,写复杂了 同时初 ...
- 【计算机视觉】基于Kalman滤波器的进行物体的跟踪
预估器 我们希望能够最大限度地使用測量结果来预计移动物体的运动. 所以,多个測量的累积能够让我们检測出不受噪声影响的部分观測轨迹. 一个关键的附加要素即此移动物体运动的模型. 有了这个模型,我们不仅能 ...
- Servlet具体解释
Servlet具体解释 基本概述 Session在计算机中,尤其是在网络应用中,称为"会话控制".在计算机专业术语中.Session是指一个终端用户与交互系统进行通信的时间间隔,通 ...