GCD

Time Limit: / MS (Java/Others)    Memory Limit: / K (Java/Others)
Total Submission(s): Accepted Submission(s): Problem Description
Give you a sequence of N(N≤,) integers : a1,...,an(<ai≤,,). There are Q(Q≤,) queries. For each query l,r you have to calculate gcd(al,,al+,...,ar) and count the number of pairs(l′,r′)(≤l<r≤N)such that gcd(al′,al′+,...,ar′) equal gcd(al,al+,...,ar). Input
The first line of input contains a number T, which stands for the number of test cases you need to solve. The first line of each case contains a number N, denoting the number of integers. The second line contains N integers, a1,...,an(<ai≤,,). The third line contains a number Q, denoting the number of queries. For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries. Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from ). For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+,...,ar) and the second number stands for the number of pairs(l′,r′) such that gcd(al′,al′+,...,ar′) equal gcd(al,al+,...,ar). Sample Input Sample Output
Case #:
/*
难点在于计数,关键要发现gcd的递减性
对于1到n的(l,r)
对于固定的l
gcd(l,r)>=gcd(l,r+1)
对于固定的r
gcd(l,r)<=gcd(l+1,r)
因此可以不用逐一地进行计数
方法为:
枚举每一个左区间,对满足gcd(l,ri)的右区间进行二分查找
跳跃着进行计数
*/
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <map>
#include <vector>
#define scan1(x) scanf("%d",&x)
#define scan2(x,y) scanf("%d%d",&x,&y)
#define scan3(x,y,z) scanf("%d%d%d",&x,&y,&z)
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const int Max=1e6+;
int dp[Max][];
map<int,LL> vis;
int A[Max];
int gcd(int x,int y)
{
if(x<y) swap(x,y);
return (y==?x:gcd(y,x%y));
}
void RMQ_init(int n)
{
for(int i=; i<=n; i++) dp[i][]=A[i];
for(int j=; (<<j)<=n; j++)
{
for(int i=; i+(<<j)-<=n; i++)
{
dp[i][j]=gcd(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
}
int RMQ(int l,int r)
{
int k=;
while((<<(k+))<=r-l+) k++;
return gcd(dp[l][k],dp[r-(<<k)+][k]);
}
void Init()
{
vis.clear();
}
int L[Max],R[Max];
int main()
{
int T,ca=;
for(scan1(T); T; T--)
{
int n,m,num;
scan1(n);
for(int i=; i<=n; i++) scan1(A[i]);
RMQ_init(n);
Init();
scan1(m);
for(int i=; i<=m; i++)
{
scan2(L[i],R[i]);
num=RMQ(L[i],R[i]);
vis.insert(make_pair(num,));
}
int l,r,mid,d1,d2,ans,nex;
for(int i=; i<=n; i++)
{
nex=i;
while(nex<=n)
{
d1=RMQ(i,nex);
l=nex;r=n;
while(l<=r)
{
mid=(l+r)>>;
d2=RMQ(i,mid);
if(d2>=d1) l=mid+,ans=mid;
else r=mid-;
}
if(vis.find(d1)!=vis.end())
vis[d1]+=(ans-nex)+;
nex=r+;
}
}
printf("Case #%d:\n",ca++);
for(int i=; i<=m; i++)
{
ans=RMQ(L[i],R[i]);
printf("%d %lld\n",ans,vis[ans]);
}
}
return ;
}

hdu 5726(二分)的更多相关文章

  1. HDU 5726 GCD 区间GCD=k的个数

    GCD Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  2. hdu 4024 二分

    转自:http://www.cnblogs.com/kuangbin/archive/2012/08/23/2653003.html   一种是直接根据公式计算的,另外一种是二分算出来的.两种方法速度 ...

  3. HDU 5726 GCD (RMQ + 二分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5726 给你n个数,q个询问,每个询问问你有多少对l r的gcd(a[l] , ... , a[r]) ...

  4. HDU 5726 GCD(RMQ+二分)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5726 题意:给出一串数字,现在有多次询问,每次询问输出(l,r)范围内所有数的gcd值,并且输出有多 ...

  5. hdu 5726 GCD 倍增+ 二分

    题目链接 给n个数, 定义一个运算f[l,r] = gcd(al, al+1,....ar). 然后给你m个询问, 每次询问给出l, r. 求出f[l, r]的值以及有多少对l', r' 使得f[l, ...

  6. HDU 5726 GCD (2016多校、二分、ST表处理区间GCD、数学)

    题目链接 题意 : 给出一个有 N 个数字的整数数列.给出 Q 个问询.每次问询给出一个区间.用 ( L.R ) 表示.要你统计这个整数数列所有的子区间中有多少个和 GCD( L ~ R ) 相等.输 ...

  7. rmq +二分暴力 hdu 5726

    参考博客 题意:n 个数字的数列,有m个询问:求出  L   到   R 的  gcd(最大公约数 ),然后问这整个序列中有多少个区间的  gcd  和这个一样. 分析:L 到  R的gcd直接用RM ...

  8. hdu 5726 GCD 暴力倍增rmq

    GCD/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence ...

  9. hdu 1669(二分+多重匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1669 思路:由于要求minimize the size of the largest group,由此 ...

随机推荐

  1. C/C++ 右值引用 及 函数调用栈剖析

    参考: [1]. C/C++堆栈指引: http://www.cnblogs.com/Binhua-Liu/archive/2010/08/24/1803095.html [2]. C++临时变量的生 ...

  2. No.016 3Sum Closest

    16. 3Sum Closest Total Accepted: 86565 Total Submissions: 291260 Difficulty: Medium Given an array S ...

  3. JS实现转动效果

    方案一 <div class="div_uploading"> <div class="div_uploading_scroll">&l ...

  4. 【转】用C#调用Windows API向指定窗口发送

    一.调用Windows API. C#下调用Windows API方法如下: 1.引入命名空间:using System.Runtime.InteropServices; 2.引用需要使用的方法,格式 ...

  5. js体验

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. 第五百八十二天 how can I 坚持

    好吧,是我错了,昨天,做好自己就行了,别人怎么样是别人的事,永远保持一颗单纯向上的心. 时间过得真快,明天又周六了.. 睡觉.

  7. CAP理论(转)

    add by zhj: CAP理论可以简单的理解为一致性,可用性,可分区性,这三者没有办法同时满足.我们使用的关系型数据库,比如MySQL,Postgresql是CA类型, 而Redis,MongoD ...

  8. 日志分析工具ELK配置详解

    日志分析工具ELK配置详解 一.ELK介绍 1.1 elasticsearch 1.1.1 elasticsearch介绍 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分 ...

  9. XidianOJ 1096 数的拆分

    题目描述 输入自然数n,然后将其拆分成由若干数相加的形式,参与加法运算的数可以重复. 输入 多组数据.每组只有一个整数n,表示待拆分的自然数n. n<=80 输出 每组一个数,即所有方案数. - ...

  10. 计时函数 clock() in c and c++

    在MSDN中,查得对clock函数定义如下: clock_t clock(void) ; 返回该程序从启动到函数调用占用CPU的时间.这个函数返回从“开启这个程序进程”到“程序中调用clock()函数 ...