hdu 5726(二分)
GCD Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others)
Total Submission(s): Accepted Submission(s): Problem Description
Give you a sequence of N(N≤,) integers : a1,...,an(<ai≤,,). There are Q(Q≤,) queries. For each query l,r you have to calculate gcd(al,,al+,...,ar) and count the number of pairs(l′,r′)(≤l<r≤N)such that gcd(al′,al′+,...,ar′) equal gcd(al,al+,...,ar). Input
The first line of input contains a number T, which stands for the number of test cases you need to solve. The first line of each case contains a number N, denoting the number of integers. The second line contains N integers, a1,...,an(<ai≤,,). The third line contains a number Q, denoting the number of queries. For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries. Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from ). For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+,...,ar) and the second number stands for the number of pairs(l′,r′) such that gcd(al′,al′+,...,ar′) equal gcd(al,al+,...,ar). Sample Input Sample Output
Case #:
/*
难点在于计数,关键要发现gcd的递减性
对于1到n的(l,r)
对于固定的l
gcd(l,r)>=gcd(l,r+1)
对于固定的r
gcd(l,r)<=gcd(l+1,r)
因此可以不用逐一地进行计数
方法为:
枚举每一个左区间,对满足gcd(l,ri)的右区间进行二分查找
跳跃着进行计数
*/
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <map>
#include <vector>
#define scan1(x) scanf("%d",&x)
#define scan2(x,y) scanf("%d%d",&x,&y)
#define scan3(x,y,z) scanf("%d%d%d",&x,&y,&z)
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const int Max=1e6+;
int dp[Max][];
map<int,LL> vis;
int A[Max];
int gcd(int x,int y)
{
if(x<y) swap(x,y);
return (y==?x:gcd(y,x%y));
}
void RMQ_init(int n)
{
for(int i=; i<=n; i++) dp[i][]=A[i];
for(int j=; (<<j)<=n; j++)
{
for(int i=; i+(<<j)-<=n; i++)
{
dp[i][j]=gcd(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
}
int RMQ(int l,int r)
{
int k=;
while((<<(k+))<=r-l+) k++;
return gcd(dp[l][k],dp[r-(<<k)+][k]);
}
void Init()
{
vis.clear();
}
int L[Max],R[Max];
int main()
{
int T,ca=;
for(scan1(T); T; T--)
{
int n,m,num;
scan1(n);
for(int i=; i<=n; i++) scan1(A[i]);
RMQ_init(n);
Init();
scan1(m);
for(int i=; i<=m; i++)
{
scan2(L[i],R[i]);
num=RMQ(L[i],R[i]);
vis.insert(make_pair(num,));
}
int l,r,mid,d1,d2,ans,nex;
for(int i=; i<=n; i++)
{
nex=i;
while(nex<=n)
{
d1=RMQ(i,nex);
l=nex;r=n;
while(l<=r)
{
mid=(l+r)>>;
d2=RMQ(i,mid);
if(d2>=d1) l=mid+,ans=mid;
else r=mid-;
}
if(vis.find(d1)!=vis.end())
vis[d1]+=(ans-nex)+;
nex=r+;
}
}
printf("Case #%d:\n",ca++);
for(int i=; i<=m; i++)
{
ans=RMQ(L[i],R[i]);
printf("%d %lld\n",ans,vis[ans]);
}
}
return ;
}
hdu 5726(二分)的更多相关文章
- HDU 5726 GCD 区间GCD=k的个数
GCD Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- hdu 4024 二分
转自:http://www.cnblogs.com/kuangbin/archive/2012/08/23/2653003.html 一种是直接根据公式计算的,另外一种是二分算出来的.两种方法速度 ...
- HDU 5726 GCD (RMQ + 二分)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5726 给你n个数,q个询问,每个询问问你有多少对l r的gcd(a[l] , ... , a[r]) ...
- HDU 5726 GCD(RMQ+二分)
http://acm.split.hdu.edu.cn/showproblem.php?pid=5726 题意:给出一串数字,现在有多次询问,每次询问输出(l,r)范围内所有数的gcd值,并且输出有多 ...
- hdu 5726 GCD 倍增+ 二分
题目链接 给n个数, 定义一个运算f[l,r] = gcd(al, al+1,....ar). 然后给你m个询问, 每次询问给出l, r. 求出f[l, r]的值以及有多少对l', r' 使得f[l, ...
- HDU 5726 GCD (2016多校、二分、ST表处理区间GCD、数学)
题目链接 题意 : 给出一个有 N 个数字的整数数列.给出 Q 个问询.每次问询给出一个区间.用 ( L.R ) 表示.要你统计这个整数数列所有的子区间中有多少个和 GCD( L ~ R ) 相等.输 ...
- rmq +二分暴力 hdu 5726
参考博客 题意:n 个数字的数列,有m个询问:求出 L 到 R 的 gcd(最大公约数 ),然后问这整个序列中有多少个区间的 gcd 和这个一样. 分析:L 到 R的gcd直接用RM ...
- hdu 5726 GCD 暴力倍增rmq
GCD/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence ...
- hdu 1669(二分+多重匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1669 思路:由于要求minimize the size of the largest group,由此 ...
随机推荐
- C#中的 正则表达式
String 类包括许多字符串搜索和替换方法,当你要在较大字符串中定位文本字符串时,可以使用这些方法. 当你希望在较大字符串中定位若干子字符串之一时,或者当你希望在字符串中标识模式时,正则表达式最有用 ...
- 简单来谈谈alloc分配器
之前说道alloc是原G2.9版本的默认的分配器,这篇就把alloc的原理梳理梳理,顺便简单介绍下有关的内存管理. 一般而言,我们通常习惯的内存分配操作和释放操作是这样的: class Foo {…} ...
- 如何为IIS增加svg和woff格式文件的支持
字体文件来显示矢量的图标,为了能在IIS上正常显示图标,可以通过增加iis的MIME-TYPE来支持图标字体文件: 增加以下两种文件类型即可: .woff application/x-woff.svg ...
- GBDT基本理论及利用GBDT组合特征的具体方法(收集的资料)
最近两天在学习GBDT,看了一些资料,了解到GBDT由很多回归树构成,每一棵新回归树都是建立在上一棵回归树的损失函数梯度降低的方向. 以下为自己的理解,以及收集到的觉着特别好的学习资料. 1.GBDT ...
- linux网络完全与防护
7.1 网络封包联机进入主机的流程 7.1.1 封包进入主机的流程 1.经过防火墙的分析 iptables 主要功能是封包过滤 主要分析TCP/IP的封包表头来进行过滤的机制 分析的是OSI的第二 ...
- mysql 主从复制原理
主从形式 mysql主从复制 灵活 一主一从 主主复制 一主多从---扩展系统读取的性能,因为读是在从库读取的: 多主一从---5.7开始支持 联级复制--- 用途及条件 mysql主 ...
- ERROR SparkUncaughtExceptionHandler: Uncaught exception in thread
ERROR SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[appclient-registration-retr ...
- HDOJ(1242)BFS+优先队列
Rescue http://acm.hdu.edu.cn/showproblem.php?pid=1242 题意:"#"是墙,"."是路,"a&quo ...
- IRelationalOperator空间关系接口简介
几何对象之间都存在某种关联关系,如包含,相等,在内部,相交,叠加等.这些关联关系的获得都可以通过IRelationalOperator接口来获得,关系运算是在两个几何对象间进行的,通过IRelatio ...
- HTML 透明、阴影,圆角等知识点
table两个属性:cellpadding:内容与单元格边框的距离,内部距离cellspacing:单元格之间的距离,外部距离 table合并边框线: border-collapse: co ...