转自该网站:http://research.stowers-institute.org/efg/R/Color/Chart/

科学可视化中常用的一些颜色表:http://geog.uoregon.edu/datagraphics/color_scales.htm

Step-by-Step Procedure (to learn about "colors")

1.  The function call, colors(), or with the British spelling, colours(), returns a vector of  657 color names in R.  The color names are in alphabetical order, except forcolors()[1], which is "white".  The names "gray" and "grey" can be spelled either way -- many shades of grey/gray are provided with both spellings.

2.  Particular color names of interest can be found if their positions in the vector are known, e.g.,

> colors()[c(552,254,26)]
[1] "red" "green" "blue"

3.  grep can be used to find color names of interest, e.g.,

> grep("red",colors())
[1] 100 372 373 374 375 376 476 503 504 505 506 507 524 525 526 527 528 552 553
[20] 554 555 556 641 642 643 644 645

> colors()[grep("red",colors())]
[1] "darkred" "indianred" "indianred1" "indianred2" 
[5] "indianred3" "indianred4" "mediumvioletred" "orangered" 
[9] "orangered1" "orangered2" "orangered3" "orangered4" 
[13] "palevioletred" "palevioletred1" "palevioletred2" "palevioletred3" 
[17] "palevioletred4" "red" "red1" "red2" 
[21] "red3" "red4" "violetred" "violetred1" 
[25] "violetred2" "violetred3" "violetred4"

> colors()[grep("sky",colors())]
[1] "deepskyblue" "deepskyblue1" "deepskyblue2" "deepskyblue3" 
[5] "deepskyblue4" "lightskyblue" "lightskyblue1" "lightskyblue2"
[9] "lightskyblue3" "lightskyblue4" "skyblue" "skyblue1" 
[13] "skyblue2" "skyblue3" "skyblue4"

4.  The function col2rgb can be used to extract the RGB (red-green-blue) components of a color, e.g.,

> col2rgb("yellow")
[,1]
red 255
green 255
blue 0

Each of the three RGB color components ranges from 0 to 255, which is interpreted to be 0.0 to 1.0 in RGB colorspace.  With each of the RGB components having 256 possible discrete values, this results in 256*256*256 possible colors, or 16,777,216 colors.

While the RGB component values range from 0 to 255 in decimal, they range from hex 00 to hex FF.  Black, which is RGB = (0,0,0) can be represented in hex as #000000, and white, which is RGB = (255,255,255), can represented in hex as #FFFFFF.

5.  R provides a way to define an RGB triple with each of the color components ranging from 0.0 to 1.0 using the rgb function.  For example, yellow can be defined:

> rgb(1.0, 1.0, 0.0)
[1] "#FFFF00"

The output is in hexadecimal ranging from 00 to FF (i.e., decimal 0 to 255) for each color component.  The 0.0 to 1.0 inputs are a bit odd, but are standard in RGB color theory.  Since decimal values from 0 to 255 are common, the rgb function allows a maxColorValue parameter as an alternative:

> rgb(255, 255, 0, maxColorValue=255)
[1] "#FFFF00"

The R function, GetColorHexAndDecimal, was written to display both hex and decimal values of the color components for a given color name:

GetColorHexAndDecimal <- function(color)
{
  c <- col2rgb(color)
  sprintf("#%02X%02X%02X %3d %3d %3d", c[1],c[2],c[3], c[1], c[2], c[3])
}

Example:

> GetColorHexAndDecimal("yellow")
[1] "#FFFF00 255 255 0"

This GetColorHexAndDecimal function will be used below in Step 9.

6.  Text of a certain color when viewed against certain backgrounds can be very hard to see, e.g., never use yellow text on a white background since there isn't good contrast between the two.  One simple hueristic in defining a text color for a given background color is to pick the one that is "farthest" away from "black" or "white".  One way to do this is to compute the color intensity, defined as the mean of the RGB triple, and pick "black" (intensity 0) for text color if the background intensity is greater than 127, or "white" (intensity 255) when the background intensity is less than or equal to 127.

The R function below, SetTextContrastColor, gives a good text color for a given background color name:

SetTextContrastColor <- function(color)
{
  ifelse( mean(col2rgb(color)) > 127, "black", "white")
}

# Define this array of text contrast colors that correponds to each
# member of the colors() array.
TextContrastColor <- unlist( lapply(colors(), SetTextContrastColor) )

Examples:

> SetTextContrastColor("white")
[1] "black"
> SetTextContrastColor("black")
[1] "white"
> SetTextContrastColor("red")
[1] "white"
> SetTextContrastColor("yellow") 
[1] "black"

7.  The following R code produces the "R Colors" graphic shown at the top of this page (using TextContrastColor defined above):

# 1a. Plot matrix of R colors, in index order, 25 per row.
# This example plots each row of rectangles one at a time.
colCount <- 25 # number per row
rowCount <- 27

plot( c(1,colCount), c(0,rowCount), type="n", ylab="", xlab="",
  axes=FALSE, ylim=c(rowCount,0))
title("R colors")

for (j in 0:(rowCount-1))
{
  base <- j*colCount
  remaining <- length(colors()) - base
  RowSize <- ifelse(remaining < colCount, remaining, colCount)
  rect((1:RowSize)-0.5,j-0.5, (1:RowSize)+0.5,j+0.5,
    border="black",
    col=colors()[base + (1:RowSize)])
  text((1:RowSize), j, paste(base + (1:RowSize)), cex=0.7,
    col=TextContrastColor[base + (1:RowSize)])
}

8. Alphabetical order is not necessarily a good way to find similar colors.  The RGB values of each of the colors() was converted to hue-saturation-value (HSV) and then sorted by HSV.  This approach groups colors of the same "hue" together a bit better.  Here's the code and graphic produced:

# 1b. Plot matrix of R colors, in "hue" order, 25 per row.
# This example plots each rectangle one at a time.
RGBColors <- col2rgb(colors()[1:length(colors())])
HSVColors <- rgb2hsv( RGBColors[1,], RGBColors[2,], RGBColors[3,],
             maxColorValue=255)
HueOrder <- order( HSVColors[1,], HSVColors[2,], HSVColors[3,] )

plot(0, type="n", ylab="", xlab="",
axes=FALSE, ylim=c(rowCount,0), xlim=c(1,colCount))

title("R colors -- Sorted by Hue, Saturation, Value")

for (j in 0:(rowCount-1))
{
  for (i in 1:colCount)
  {
   k <- j*colCount + i
   if (k <= length(colors()))
   {
    rect(i-0.5,j-0.5, i+0.5,j+0.5, border="black", col=colors()[ HueOrder[k] ])
    text(i,j, paste(HueOrder[k]), cex=0.7, col=TextContrastColor[ HueOrder[k] ])
   }
  }
}

9.  While the color matrices above are useful, a more useful display would include a rectangular area showing the color, the color index, the color name, and the RGB values, both in hexadecimal, which is often used in web pages.

The code for this is a bit tedious -- see Item #2 in the ColorChart.R code for complete details. Here is the first page of the Chart of R colors.

PDF of 7-page "Chart of R colors"

10.  To create a PDF file (named ColorChart.pdf) with all the graphics shown on this page, issue this R command:

source("http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.R")

【转】R语言笔记--颜色的使用的更多相关文章

  1. R语言笔记

    R语言笔记 学习R语言对我来说有好几个地方需要注意的,我觉得这样的经验也适用于学习其他的新的语言. 语言的目标 我理解语言的目标就是这个语言是用来做什么的,为什么样的任务服务的,也就是设计这个语言的动 ...

  2. R语言笔记4--可视化

    接R语言笔记3--实例1 R语言中的可视化函数分为两大类,探索性可视化(陌生数据集,不了解,需要探索里面的信息:偏重于快速,方便的工具)和解释性可视化(完全了解数据集,里面的故事需要讲解别人:偏重全面 ...

  3. R语言笔记完整版

    [R笔记]R语言函数总结   R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头, ...

  4. R语言笔记:快速入门

    1.简单会话 > x<-c(1,2,4) > x [1] 1 2 4 R语言的标准赋值运算符是<-.也可以用=,不过不建议用它,有些情况会失灵.其中c表示连接(concaten ...

  5. 初探R语言——R语言笔记

    R语言使用 <-  赋值 # 作为注释符号 c()函数用于作为向量赋值,例如age<-c(1,2,3,4,5) mean()用于求向量的平均值 sd()求向量的标准差 cor(a,b)求a ...

  6. R语言笔记5--读数据

    1.读文本文件数据 (1)先设置工作目录,把文本文件放于该目录下 备注:在记事本里写完数据后,按一下回车,负责在R语言中出现错误 (2)读剪贴板 文本或EXCEL的数据均可通过剪贴板操作 (3)读ex ...

  7. R语言笔记1--向量、数组、矩阵、数据框、列表

    注释:R语言是区分大小写的 1.向量 R语言中可以将各种向量赋值为一个变量,这种赋值操作符就是等号“=”,也可以使用“<-”. 1)产生向量 (1)函数c() 例如:x1=c(2,4,6,8,0 ...

  8. R语言笔记2--循环、R脚本

    1.循环语句 for语句 while语句 2.R脚本 source()函数 print()函数

  9. r语言笔记 jn

    get_range <- function(data_name , row_name){ library(stringr) load(data_name) data_str <- str_ ...

随机推荐

  1. JsonView Tool

  2. JavaScript基础知识整理

    只整理基础知识中关键技术,旨在系统性的学习和备忘. 1.在 JScript 中 null 和 undefined 的主要区别是 null 的操作象数字 0,而 undefined 的操作象特殊值NaN ...

  3. CentOS下Redis服务器安装配置

    说明: 操作系统:CentOS 1.安装编译工具 yum install wget  make gcc gcc-c++ zlib-devel openssl openssl-devel pcre-de ...

  4. ServiceStack.Redis 中关系操作的局限与bug

    redis是文档型的,nosql中难处理的是关系. 比如人可以发博客,博客可以有分类.按照传统sql中,用户表和分类表都是主表,博客表是从表,有用户的外键和分类的外键 如果使用文档型的思考方式. 为用 ...

  5. MongoDB入门三:MongoDB shell

    MongoDB shell MongDB shell是一个功能完备的Javascript解释器,可以运行Javascript程序.也可以用于连接MongoDB服务器,执行脚本,对数据库进行操作.类似于 ...

  6. Android学习笔记之ExecutorService线程池的应用....

    PS:转眼间就开学了...都不知道这个假期到底是怎么过去的.... 学习内容: ExecutorService线程池的应用... 1.如何创建线程池... 2.调用线程池的方法,获取线程执行完毕后的结 ...

  7. 我也想聊聊 OAuth 2.0 —— Access Token

    这是一篇待在草稿箱半年之久的文章 连我自己都不知道我的草稿箱有多少未发布的文章了.这应该是我在上一家公司未解散之前写的,记得当时是要做一个开发者中心,很不幸. 今天,打开草稿箱有种莫名的伤感,看到这个 ...

  8. .NET VS2012 将代码同步上传到 oschina.net 和 github

    1.先首要注册两个账号 https://github.com/ http://git.oschina.net/ 2.下载 getextendions http://sourceforge.net/pr ...

  9. 转载:全球首个微信小程序(应用号)开发教程!通宵吐血赶稿,每日更新!

    微信应用号(小程序,「应用号」的新称呼)终于来了! 目前还处于内测阶段,微信只邀请了部分企业参与封测.想必大家都关心应用号的最终形态到底是什么样子?怎样将一个「服务号」改造成为「小程序」? 我们暂时以 ...

  10. Criteria查询数据

    Criteria介绍: Criteria查询是Hibernate提供的一种查询方式,与HQL基于字符串的查询形式完全不同.Hibernate提供了org.hiberanee.Criteria 接口.o ...