【功能】

Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量。强连通分量是指有向图G里顶点间能互相到达的子图。而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连通分量就是极大强连通分量。

【算法思想】

用dfs遍历G中的每个顶点,通dfn[i]表示dfs时达到顶点i的时间,low[i]表示i所能直接或间接达到时间最小的顶点。(实际操作中low[i]不一定最小,但不会影响程序的最终结果)

程序开始时,time初始化为0,在dfs遍历到v时,low[v]=dfn[v]=time++,

v入栈(这里的栈不是dfs的递归时系统弄出来的栈)扫描一遍v所能直接达到的顶点k,如果 k没有被访问过那么先dfs遍历k,low[v]=min(low[v],low[k]);如果k在栈里,那么low[v]=min(low[v],dfn[k])(就是这里使得low[v]不一定最小,但不会影响到这里的low[v]会小于dfn[v])。扫描完所有的k以后,如果low[v]=dfn[v]时,栈里v以及v以上的顶点全部出栈,且刚刚出栈的就是一个极大强连通分量。

【大概的证明】

1.  在栈里,当dfs遍历到v,而且已经遍历完v所能直接到达的顶点时,low[v]=dfn[v]时,v一定能到达栈里v上面的顶点:

因为当dfs遍历到v,而且已经dfs递归调用完v所能直接到达的顶点时(假设上面没有low=dfn),这时如果发现low[v]=dfn[v],栈上面的顶点一定是刚才从顶点v递归调用时进栈的,所以v一定能够到达那些顶点。

2 .dfs遍历时,如果已经遍历完v所能直接到达的顶点而low[v]=dfn[v],我们知道v一定能到达栈里v上面的顶点,这些顶点的low一定小于 自己的dfn,不然就会出栈了,也不会小于dfn[v],不然low [v]一定小于dfn[v],所以栈里v以其v以上的顶点组成的子图是一个强连通分量,如果它不是极大强连通分量的话low[v]也一定小于dfn[v](这里不再详细说),所以栈里v以其v以上的顶点组成的子图是一个极大强连通分量。

【时间复杂度】

因为所有的点都刚好进过一次栈,所有的边都访问的过一次,所以时间复杂度为O(n+m)

【可看证明】

若存在边<i, j>且遍历到它的时候j在栈中,那么i和j可能存在三种关系:
(1)i是j的祖先;
(2)j是i的祖先;
(3)i和j无前后关系。
对于情况(1),必有dfn[j]>dfn[i],因此不必考虑;
对于情况(2),<i, j>是逆向边,显然i、j处于同一个强连通分支;
对于情况(3):<i, j>是横叉边。显然i、j必然在同一棵搜索树中(因为搜索树的根结点肯定满足low=dfn),设p=LCA(i, j),由于从p到j的路径上木有low=dfn的结点(否则j已经出栈了),所以j必然可以到达p,又因为p可以到达i,所以j也可以到达i,又因为存在边<i, j>,所以i、j处于同一个强连通分支,这样就需要在计算low[i]的时候把dfn[j]考虑进去,而不能让i及其所有后代成为一个强连通分支。

【外援】https://www.byvoid.com/blog/scc-tarjan

Tarjan算法详解理解集合的更多相关文章

  1. Tarjan算法详解

    Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...

  2. Tarjan 算法详解

    一个神奇的算法,求最大连通分量用O(n)的时间复杂度,真实令人不可思议. 废话少说,先上题目 题目描述: 给出一个有向图G,求G连通分量的个数和最大连通分量. 输入: n,m,表示G有n个点,m条边 ...

  3. ACM(图论)——tarjan算法详解

    ---恢复内容开始--- tarjan算法介绍: 一种由Robert Tarjan提出的求解有向图强连通分量的线性时间的算法.通过变形,其亦可以求解无向图问题 桥: 割点: 连通分量: 适用问题: 求 ...

  4. Tarjan算法 详解+心得

    Tarjan算法是由Robert Tarjan(罗伯特·塔扬,不知有几位大神读对过这个名字) 发明的求有向图中强连通分量的算法. 预备知识:有向图,强连通. 有向图:由有向边的构成的图.需要注意的是这 ...

  5. 【转】AC算法详解

    原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...

  6. KM算法详解[转]

    KM算法详解 原帖链接:http://www.cnblogs.com/zpfbuaa/p/7218607.html#_label0 阅读目录 二分图博客推荐 匈牙利算法步骤 匈牙利算法博客推荐 KM算 ...

  7. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  8. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  9. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

随机推荐

  1. app:transformClassesWithJarMergingForDebug uplicate entry: android/support/v4/app/BackStackState$1.class

    .Execution failed for task ':app:transformClassesWithJarMergingForDebug'.> com.android.build.api. ...

  2. Myeclipse+maven时Tomcat部署时maven的依赖文件不能部署到Tomcat上

    解决办法:

  3. Gitub

    1.下载地址(注册:jackchn,jackchn@foxmail.com) http://windows.github.com/ 2.使用 github for Windows使用介绍 搭建一个免费 ...

  4. Android 长按Listview显示CheckBox,实现批量删除。

    ListView实现的列表,如果是可编辑,可删除的,一般都要提供批量删除功能,否则的话,一项一项的删除体验很不好,也给用户带来了很大的麻烦. 实现效果图 具体实现代码 select.xml 主布局文件 ...

  5. Linux及安全——模块

    Linux及安全——模块 一.模块的编译.生成.测试.删除 1.编写模块代码 编写:gedit test.c 查看:cat test.c 2.查看版本信息 3.编写Makefile obj-m :这个 ...

  6. iOS中plist的创建,数据写入与读取

    iOS中plist的创建,数据写入与读取 Documents:应用将数据存储在Documents中,但基于NSuserDefaults的首选项设置除外Library:基于NSUserDefaults的 ...

  7. Jenkins进阶系列之——01使用email-ext替换Jenkins的默认邮件通知

    1 简述 众所周知,Jenkins默认提供了一个邮件通知,能在构建失败.构建不稳定等状态后发送邮件.但是它本身有很多局限性,比如它的邮件通知无法提供详细的邮件内容.无法定义发送邮件的格式.无法定义灵活 ...

  8. HTML5 IE兼容问题

    最近,为公司做产品的时候用到了HTML5,用IE11打开的时候出现了界面乱或者加载js错误的问题. IE10 or IE11 :Browser Mode is IE10 .Document Mode: ...

  9. php mysqli扩展之预处理

    在前一篇 mysqli基础知识中谈到mysqli的安装及基础操作(主要是单条sql语句的查询操作),今天介绍的是mysqli中很重要的一个部分:预处理. 在mysqli操作中常常涉及到它的三个主要类: ...

  10. Object C学习笔记13-Dictionary字典

    通过Array数组和Set集合的学习和理解,可以想象得到Dictionary也分为两种情况了,那就是可变和不可变两种类型的.的确如此,在Object C中提供了两个字典类,分别为NSDictionar ...