题目:

解题过程:

第一次做这题的时候,很自然的想到了冒泡和选择,我交的代码是用选择写的。基本全WA(摊手)。

贴上第一次的代码:

//
// main.cpp
// sequenceschange
//
// Created by wasdns on 16/10/7.
// Copyright ? 2016年 wasdns. All rights reserved.
// #include <iostream>
#include <string>
#include <cstdio>
#include <algorithm>
using namespace std; int seq[50005]; int main() { int i, j, n; cin >> n;
for (i = 0; i < n; i++) {
cin >> seq[i];
} int cnt = 0;
int t = 0;
for (i = n - 1; i >= 0; i--) { for (j = i - 1; j >= 0; j--) { if(seq[i] > seq[j]) break; cnt ++; t = seq[i];
seq[i] = seq[j];
seq[j] = t;
}
} cout << cnt << endl; return 0;
}

冒泡和选择,这两种算法的问题在于,会有重复比较的元素,不满足题意要求的最小比较次数。

本题也是比较经典的逆序对问题,解决的方法是插入排序。

这里给出链接参考:九大排序算法再总结

第二种算法(分治加插入排序)思想:

给出一个数组,以及给出左边界l右边界r代表需要排序的序列范围,将这个序列不断分成两个部分,直到递归到单个元素再向上进行Union的操作,Union的操作通过插入排序来实现。

//
// main.cpp
// 逆序对
//
// Created by wasdns on 16/12/1.
// Copyright © 2016年 wasdns. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std; int a[50010]; /*
用来debug的函数
*/
void printa(int l, int r)
{
for (int i = l; i <= r; i++) {
printf("%d ", a[i]);
}
printf("\n");
} /*
交换函数
*/
void swap(int i, int j)
{
int t = a[i];
a[i] = a[j];
a[j] = t;
} /*
Union 两部分合并函数
*/
int Union(int l, int r)
{
if (l == r) return 0; int i, p1, p2; //p1指向序列A的元素,p2指向序列B的元素 int cnt = 0; //记录比较次数 for (i = l+1; i <= r; i++)
{
p1 = i-1;
p2 = i; while (a[p2] < a[p1] && p1 != 0)
{
swap(p1, p2); cnt++; p1--;
p2--;
}
} return cnt;
} /*
排序算法主体
*/ int divsort(int l, int r)
{
//printf("div:");
//printa(l, r); if (l == r) return 0; int cnt = 0; int mid = (l+r) / 2; int ltime = divsort(l, mid);
int rtime = divsort(mid+1, r); cnt += ltime;
cnt += rtime; cnt += Union(l, r); //printf("afterdiv:");
//printa(l, r); return cnt;
} void Initial(int n)
{
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
}
} int main()
{
int n; cin >> n; Initial(n); int cnt; cnt = divsort(1, n); printf("%d\n", cnt); return 0;
}

结果是部分点TLE:

分析下算法复杂度:选择最后一次的Union操作,最坏情况下一共有50000个节点,从l到mid是25000个排好序的元素,从mid开始到r有25000个无序的元素,将后面的25000个元素插入到前面的序列,>=25000*25000的时间;复杂度为O(n^2),因此TLE。

于是选择使用归并排序,之前的操作和算法二的思想类似,但是修改了Union的操作:维护一个数组b,使用两个指针指向两个待排序的序列,把这两个指针分别指向的元素进行比较,较小的元素加入到b中,指向它的指针后移,直到到达边界。

另外一个需要care的点是cnt的计数

倘若先前的序列叫做A,后面的序列叫做B,当判断出B序列的当前指向元素较小进入数组b时,相当于是通过mid+1-p1(p1是当前指针指向A的位置)次比较的操作将元素移至有序的位置。

int Union(int l, int r)
{
if (l == r) return 0; int mid = (l+r) / 2; int i, p1 = l, p2 = mid+1; int cnt = 0; int tot = 1; while (p1 <= mid && p2 <= r)
{
if (a[p1] > a[p2]) { cnt += mid+1-p1; //相当于比较了mid+1-p1次 b[tot++] = a[p2++];
} else b[tot++] = a[p1++];
} if (p1 > mid && p2 <= r)
{
while (p2 <= r)
{
b[tot++] = a[p2++];
}
} else if (p2 > r && p1 <= mid)
{
while (p1 <= mid)
{
b[tot++] = a[p1++];
}
} for (i = l; i <= r; i++)
{
a[i] = b[i-l+1];
} return cnt;
} int divsort(int l, int r)
{
//printf("div:");
//printa(l, r); if (l == r) return 0; int cnt = 0; int mid = (l+r) / 2; int ltime = divsort(l, mid);
int rtime = divsort(mid+1, r); cnt += ltime;
cnt += rtime; cnt += Union(l, r); //printf("afterdiv:");
//printa(l, r); return cnt;
}

算法复杂度:O(n)

2016/12/2

DS实验题 Inversion的更多相关文章

  1. DS实验题 融合软泥怪-2 Heap实现

    题目和STL实现:DS实验题 融合软泥怪-1 用堆实现优先队列 引言和堆的介绍摘自:Priority Queue(Heaps)--优先队列(堆) 引言: 优先队列是一个至少能够提供插入(Insert) ...

  2. DS实验题 Old_Driver UnionFindSet结构 指针实现邻接表存储

    题目见前文:DS实验题 Old_Driver UnionFindSet结构 这里使用邻接表存储敌人之间的关系,邻接表用指针实现: // // main.cpp // Old_Driver3 // // ...

  3. DS实验题 Dijkstra算法

    参考:Dijkstra算法 数据结构来到了图论这一章节,网络中的路由算法基本都和图论相关.于是在拿到DS的实验题的时候,决定看下久负盛名的Dijkstra算法. Dijkstra的经典应用是开放最短路 ...

  4. DS实验题 sights

    算法与数据结构实验题 6.3 sights ★实验任务 美丽的小风姑娘打算去旅游散心,她走进了一座山,发现这座山有 n 个景点, 由于山路难修,所以施工队只修了最少条的路,来保证 n 个景点联通,娇弱 ...

  5. DS实验题 order

    算法与数据结构 实验题 6.4 order ★实验任务 给出一棵二叉树的中序遍历和每个节点的父节点,求这棵二叉树的先序和后序遍历. ★数据输入 输入第一行为一个正整数n表示二叉树的节点数目,节点编号从 ...

  6. DS实验题 Order 已知父节点和中序遍历求前、后序

    题目: 思路: 这题是比较典型的树的遍历问题,思路就是将中序遍历作为位置的判断依据,假设有个节点A和它的父亲Afa,那么如果A和Afa的顺序在中序遍历中是先A后Afa,则A是Afa的左儿子,否则是右儿 ...

  7. DS实验题 Missile

    题目: 提示:并没有精度问题. 原题 NOIP2010 导弹拦截 思路 设源点为A(x1, y1)和B(x2, y2). 第一步,用结构体存节点,包括以下元素: 1.横坐标x 2.纵坐标y 3.节点和 ...

  8. DS实验题 击鼓传花

    题目: 代码1(数组实现): // // main.cpp // DS-击鼓传花 // // Created by wasdns on 16/11/9. // Copyright © 2016年 wa ...

  9. DS实验题 地鼠安家

    ★实验任务 fd是一个公认的美丽校园.一天,fd来了一群地鼠,编号为1到n,他们希望在这里定居.现在先由第一只地鼠往下打一个单位的距离,并且在那里安家.对于每一个已经安家的地鼠,如果他左下或右下没有邻 ...

随机推荐

  1. HttpHandler简介

    新建的一般处理程序后缀为.ashx,一般会另外新建一个后缀为.ashx.cs的文件,其实所有的代码都写在.ashx.cs里面,只是微软帮我们做了一个傻瓜化的转换新建的一般处理程序,如:Text1,它就 ...

  2. (九)STM32之AFIO

    也许你以为IO和AFIO是很简单的,事实上有几个误区可能很多人都没注意过,当你只用现成的开发板来学习的时候,别人已经帮你做好了资源分配,所有的外设功能学习都是照着别人给你的例程去做的,这才没让你觉得奇 ...

  3. 【读书笔记】读《JavaScript模式》 - 对象创建模式

    JavaScript是一种简洁明了的语言,其中并没有在其他语言中经常使用的一些特殊语法特征,比如命名空间(namespace).模块(module).包(package).私有属性(private p ...

  4. Linux系统查看系统是32位还是64位方法总结(转)

    总结.归纳查看Linux系统是32位还是64位的一些方法,很多内容来自网上网友的博客.本篇只是整理.梳理这方面的知识,方便自己忘记的时候随时查看. 方法1:getconf LONG_BIT 查看 如下 ...

  5. Linux网络编程必看书籍推荐

    首先要说讲述计算机网络和TCP/IP的书很多. 先要学习网络知识才谈得上编程 讲述计算机网络的最经典的当属Andrew S.Tanenbaum的<计算机网络>第五版,这本书难易适中. &l ...

  6. zookeeper中client命令实践

    Welcome to ZooKeeper! 2016-09-14 16:06:04,528 [myid:] - INFO [main-SendThread(master:2181):ClientCnx ...

  7. VMware Tools安装

    不是每一个程序员都必须玩过linux,只是博主觉得现在的很多服务器都是linux系统的,而自己属于那种前端也搞,后台也搞,对框架搭建也感兴趣,但是很多生产上的框架和工具都是安装在服务器上的,而且有不少 ...

  8. wait、notify、notifyAll和Condition

    wait().notify()和notifyAll()是基于synchronized Condition是基于Lock的. Condition是在java 1.5中才出现的,它用来替代传统的Objec ...

  9. mount part中位置的作用

    比如部件A上有个mount part,通过它与部件B装配.mount part与B是通过fixed joint 链接的,所以这个coordinate reference位置就决定了fixed join ...

  10. BZOJ3748 : [POI2015]Kwadraty

    打表可得结论: 1.只有2,3,6,7,8,11,12,15,18,19,...,108,112,128这31个数的k值是无穷大 2.当n足够大的时候,即当n>506时,设$f(x)=1^2+2 ...