问题来源:刘汝佳《算法竞赛入门经典--训练指南》 P67 例题28:

问题描述:有一个长度为n的整数序列,两个游戏者A和B轮流取数,A先取,每次可以从左端或者右端取一个或多个数,但不能两端都取,所有数都被取完时游戏结束,然后统计每个人取走的所有数字之和作为得分,两人的策略都是使自己的得分尽可能高,并且都足够聪明,求A的得分减去B的得分的结果。

问题分析:1.设dp[i][j]表示从第i第j的数的序列中,双方都采取最优策略的前提下,先手得分的最大值

       2.若求dp[i][j],我们可以枚举从左边(或者右边)取多少个数,并求枚举过程中dp[i][j]的最大值,则有状态转移方程

          dp[i][j] = sum[i][j] - Min{dp[i+1][j],dp[i+2][j],...,dp[j][j],  dp[i][i],dp[i][i+1],...,dp[i][j-1]}

      (其中sum[i][j] 表示从i到j的序列和)

例题链接:...

例题:UVa 10891

10891 - Game of Sum

Time limit: 3.000 seconds

  This is a two player game. Initially there are n integer numbers in an array and players A and B get chance to take them alternatively. Each player can take one or more numbers from the left or right end of the array but cannot take from both ends at a time. He can take as many consecutive numbers as he wants during his time. The game ends when all numbers are taken from the array by the players. The point of each player is calculated by the summation of the numbers, which he has taken. Each player tries to achieve more points from other. If both players play optimally and player A starts the game then how much more point can player A get than player B?

Input

  The input consists of a number of cases. Each case starts with a line specifying the integer n (0 < n ≤100), the number of elements in the array. After that, n numbers are given for the game. Input is terminated by a line where n=0.

Output

  For each test case, print a number, which represents the maximum difference that the first player obtained after playing this game optimally.

Sample Input                                   Output for Sample Input

4

4 -10 -20 7

4

1 2 3 4

0

7

10

O(n3)代码:

 #include "stdio.h"
#include "string.h"
#define N 105
int a[N];
int sum[N];
int dp[N][N],mark[N][N]; int inline Min(int a,int b) { return a<b?a:b; } int DP(int i,int j) //记忆化搜索
{
if(mark[i][j])
return dp[i][j];
mark[i][j] = ;
int m = ; //全部取光
for(int k=i+; k<=j; k++)
m = Min(m,DP(k,j));
for(int k=j-; k>=i; k--)
m = Min(m,DP(i,k));
dp[i][j] = sum[j] - sum[i-] - m;
return dp[i][j];
} int main()
{
int n;
int i;
while(scanf("%d",&n),n!=)
{
for(i=; i<=n; i++)
scanf("%d",&a[i]);
memset(sum,,sizeof(sum));
for(i=; i<=n; i++)
sum[i] = sum[i-] + a[i];
memset(dp,,sizeof(dp));
memset(mark,,sizeof(mark)); //标记初始化
printf("%d\n",*DP(,n)-sum[n]);
}
return ;
}

09_Sum游戏(UVa 10891 Game of Sum)的更多相关文章

  1. uva 10891 Game of Sum(区间dp)

    题目连接:10891 - Game of Sum 题目大意:有n个数字排成一条直线,然后有两个小伙伴来玩游戏, 每个小伙伴每次可以从两端(左或右)中的任意一端取走一个或若干个数(获得价值为取走数之和) ...

  2. [题解]UVa 10891 Game of Sum

    在游戏的任何时刻剩余的都是1 - n中的一个连续子序列.所以可以用dp[i][j]表示在第i个数到第j个数中取数,先手的玩家得到的最大的分值.因为两个人都很聪明,所以等于自己和自己下.基本上每次就都是 ...

  3. UVa 10891 Game of Sum - 动态规划

    因为数的总和一定,所以用一个人得分越高,那么另一个人的得分越低. 用$dp[i][j]$表示从$[i, j]$开始游戏,先手能够取得的最高分. 转移通过枚举取的数的个数$k$来转移.因为你希望先手得分 ...

  4. UVA 10891 Game of Sum(区间DP(记忆化搜索))

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  5. UVA 10891 Game of Sum

    题目大意就是有一个整数串,有两个人轮流取,每次可以取走一个前缀或后缀.两人都足够聪明,且都会使自己收益最大.求取完后先手比后手多多少. 每次我看见上面那句就会深感自己的愚笨无知. 所以来推推性质? 1 ...

  6. UVa 10891 - Game of Sum 动态规划,博弈 难度: 0

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  7. UVA - 10891 Game of Sum 区间DP

    题目连接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19461 Game of sum Description This ...

  8. UVA 10891 Game of Sum(DP)

    This is a two player game. Initially there are n integer numbers in an array and players A and B get ...

  9. 28.uva 10891 Game of Sum 记忆化dp

    这题和上次的通化邀请赛的那题一样,而且还是简化版本... 那题的题解      请戳这里 ... #include<cstdio> #include<algorithm> #i ...

随机推荐

  1. Linux - Ubuntu下JDK配置

    系统版本: ubuntu 14.04 x64JDK版本: jdk-8u60-linux-x64 1.查看系统位数,输入以下命令即可 getconf LONG_BIT 2.下载对应的JDK文件,我这里下 ...

  2. TCP和UDP之间的区别

    TCP---传输控制协议,提供的是面向连接.可靠的字节流服务.当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据.TCP提供超时重发,丢弃重复数据,检验数据,流量控制等 ...

  3. Array(数组)与Json String (Json字符串) 的相互转换

    1.Array转换成Json String             function jsonToString(arr) {             var s = "";     ...

  4. sql 事务使用

    BEGIN TRAN Tran_Money --开始事务 DECLARE @tran_error int; SET @tran_error = 0; BEGIN TRY UPDATE tb_Money ...

  5. edittext 监听内容变化

    给EditText追加ChangedListener可以监听EditText内容变化的监听 如图是效果图  类似于过滤的一种实现 1  布局也就是一个EditText,当EditText内容发生变化时 ...

  6. NYOJ:题目860 又见01背包

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=860 方法一:不用滚动数组(方法二为用滚动数组,为方法一的简化) 动态规划分析:最少要拿总 ...

  7. Webhooks PHP

    Webhooks/Parse When webhooks are triggered in the gateway, a notification is sent as a POST request ...

  8. sso demo ( cas )

    1. generate keystore command : keytool -genkey -alias testtomcat -keyalg RSA -keystore "C:\User ...

  9. Maven多模块项目使用MyBatis Generator

    开发环境: JDK:8u102 Maven:3.3.9 MySQL:5.7.10 MySQL Connector:5.1.40 IDE:IntelliJ IDEA 2016 MyBatis:3.4.1 ...

  10. nginx跨域处理

    http://www.nginx.cn/nginx-download nginx.conf配置 if ($request_method = ‘OPTIONS’) {         add_heade ...