【BZOJ 1901】【Zju 2112】 Dynamic Rankings 动态K值 树状数组套主席树模板题
达神题解传送门:http://blog.csdn.net/dad3zz/article/details/50638360
说一下我对这个模板的理解:
看到这个方法很容易不知所措,因为动态K值需要套树状数组,而我一开始根本不知道该怎么套,,
学习吧,,,
然后我自己脑补如果不套会如何?后来想到是查询O(logn),修改是O(nlogn),很明显修改的复杂度太大了,为了降低修改的复杂度,我们只得套上树状数组来维护前缀和使它的n的复杂度降低为logn,从而修改的复杂度变为O(log2n)。但因为我们套了树状数组,所以查询的复杂度也不得不上升到O(log2n),但从整体上看来这些牺牲是值得的,总复杂度最终是O(nlog2n)。
这些都太简单了是吧,,果然我太傻,,
比较的时候和普通的主席树不同,不再是两个做差了,而是把树状数组中的节点放到两个池子里做差,我的code里是L和R两个池子,,
至于为什么要离线,我思考了很久,,,问过达神,,,并不理解,,,继续思考,,,后来明白是为了找到所有序列中出现的数的最大值,这样才能建树啊,,,然后得出结论:我太傻以至于马上就要滚粗了,,,TAT
最后向iwtwiioi寻求帮助,知道自己错误的原因是数组开的太小了,,
达神也帮我开大过,不过貌似太大炸了导致每次都是TLE或WA,,
还是得注意细节啊,这道题一个晚上才写出了模板,我果然太弱了。
#include<cstdio>
#include<algorithm>
#define lowbit(x) (x&-x)
#define read(x) x=getint()
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
using namespace std;
const int N=10010;
inline const int getint(){char c=getchar();int k=1,r=0;for(;c<'0'||c>'9';c=getchar())if(c=='-')k=-1;for(;c>='0'&&c<='9';c=getchar())r=r*10+c-'0';return k*r;}
struct node{int l,r,s;}T[N*300];
int n,m,cl,cr,tot=0,num=0,cnt=0,ans[N<<1],root[N],a[N],L[N],R[N],QL[N],QR[N],K[N];
inline void update(const int &l,const int &r,int &pos,const int &k,const int &sz){
T[++tot]=T[pos]; pos=tot; T[pos].s+=sz;
if (l==r) return; int mid=(l+r)>>1;
if (k<=mid) update(l,mid,T[pos].l,k,sz); else update(mid+1,r,T[pos].r,k,sz);
}
inline void addd(int x,const int &k,const int &sz){for(;x<=n;x+=lowbit(x)) update(1,num,root[x],k,sz);}
inline int query(const int &l,const int &r,const int &k){
if (l==r) return l;
int suml=0,sumr=0;
for1(i,1,cl) suml+=T[T[L[i]].l].s;
for1(i,1,cr) sumr+=T[T[R[i]].l].s;
int mid=(l+r)>>1;
if (k<=sumr-suml){
for1(i,1,cl) L[i]=T[L[i]].l;
for1(i,1,cr) R[i]=T[R[i]].l;
return query(l,mid,k);
}else{
for1(i,1,cl) L[i]=T[L[i]].r;
for1(i,1,cr) R[i]=T[R[i]].r;
return query(mid+1,r,k-sumr+suml);
}
}
inline int getans(int l,int r,const int &k){
for(cl=0;l>0;l-=lowbit(l)) L[++cl]=root[l];
for(cr=0;r>0;r-=lowbit(r)) R[++cr]=root[r];
return query(1,num,k);
}
int main(){
read(n); read(m); char c;
for1(i,1,n) read(a[i]),ans[++cnt]=a[i];
for1(i,1,m){
for(c=getchar();c<'A'||c>'Z';c=getchar());
read(QL[i]); read(QR[i]);
if (c=='Q') read(K[i]);
else ans[++cnt]=QR[i];
}sort(ans+1,ans+cnt+1);
ans[cnt+1]=1E9+10;
for1(i,1,cnt) if (ans[i]!=ans[i+1]) ans[++num]=ans[i];
for1(i,1,n) a[i]=lower_bound(ans+1,ans+num+1,a[i])-ans;
for1(i,1,n) addd(i,a[i],1);
for1(i,1,m){
if (K[i]) printf("%d\n",ans[getans(QL[i]-1,QR[i],K[i])]);
else{
addd(QL[i],a[QL[i]],-1);
a[QL[i]]=lower_bound(ans+1,ans+num+1,QR[i])-ans;
addd(QL[i],a[QL[i]],1);
}
}return 0;
}
然后就可以了。这是DaD3zZ几年前就随手虐的东西,本蒟蒻还得继续努力呀~~~
【BZOJ 1901】【Zju 2112】 Dynamic Rankings 动态K值 树状数组套主席树模板题的更多相关文章
- BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树
[题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...
- ZOJ 2112 Dynamic Rankings(树状数组套主席树 可修改区间第k小)题解
题意:求区间第k小,节点可修改 思路:如果直接用静态第k小去做,显然我更改一个节点后,后面的树都要改,这个复杂度太高.那么我们想到树状数组思路,树状数组是求前缀和,那么我们可以用树状数组套主席树,求出 ...
- P2617 Dynamic Rankings(树状数组套主席树)
P2617 Dynamic Rankings 单点修改,区间查询第k大 当然是无脑树套树了~ 树状数组套主席树就好辣 #include<iostream> #include<cstd ...
- LUOGU P2617 Dynamic Rankings(树状数组套主席树)
传送门 解题思路 动态区间第\(k\)大,树状数组套主席树模板.树状数组的每个位置的意思的是每棵主席树的根,维护的是一个前缀和.然后询问的时候\(log\)个点一起做前缀和,一起移动.时空复杂度\(O ...
- [COGS257]动态排名系统 树状数组套主席树
257. 动态排名系统 时间限制:5 s 内存限制:512 MB [问题描述]给定一个长度为N的已知序列A[i](1<=i<=N),要求维护这个序列,能够支持以下两种操作:1.查询A[ ...
- BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树
[题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...
- BZOJ 2141 排队(树状数组套主席树)
解法很多的题,可以块套树状数组,可以线段树套平衡树.我用的是树状数组套主席树. 题意:给出一段数列,m次操作,每次操作是交换两个位置的数,求每次操作后的逆序对数.(n,m<=2e4). 对于没有 ...
- BZOJ1901 - Dynamic Rankings(树状数组套主席树)
题目大意 给定一个有N个数字的序列,然后又m个指令,指令种类只有两种,形式如下: Q l r k 要求你查询区间[l,r]第k小的数是哪个 C i t 要求你把第i个数修改为t 题解 动态的区间第k ...
- 【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套主席树)
http://www.lydsy.com/JudgeOnline/problem.php?id=1901 首先还是吐槽时间,我在zoj交无限tle啊!!!!!!!!我一直以为是程序错了啊啊啊啊啊啊. ...
- 【树状数组套主席树】带修改区间K大数
P2617 Dynamic Rankings 题目描述给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+ ...
随机推荐
- 第2章 面向对象的设计原则(SOLID):4_接口隔离原则(ISP)
4. 接口隔离原则(Interface Segregation Principle,ISP) 4.1 定义 (1)使用多个专门的接口,而不使用单一的总接口,即客户端不应该依赖那些它不需要的接口.类间的 ...
- Python创建Cocos2d-x 2.2方法
把创建项目做成一个批处理,当创建项目时可以省时省力很多. 操作步骤 1.在 E:\cocos2d-x-2.2.1\tools\project-creator 目录下创建 create_project. ...
- git冲突解决办法
git错误error: Your local changes to the following files would be overwritten 然后可以使用git diff -w +文件名 来确 ...
- 移动App崩溃测试用例设计
我们的日常生活中对移动设备越来越多的使用意味着移动App测试这个主题已成为需要考虑的一个无法避免的问题.根据最近的调查研究,用户难以容忍有bug的移动App. 移动App Bug的影响是用户体验差.A ...
- java 21 - 14 Properties类
类 Properties Properties 类表示了一个持久的属性集.Properties 可保存在流中或从流中加载.属性列表中每个键及其对应值都是一个字符串. 注意:Properties是Has ...
- java 16-1 ArrayList的练习1
需求: ArrayList去除集合中字符串的重复值(去掉相同的字符串) 分析: 第一种做法:创建一个新的空集合: A:创建1个具有相同字符串的集合 B:创建1个空的集合 C:遍历第一个集合里面的元素 ...
- usb驱动开发1之学习准备
此系列是http://blog.csdn.net/fudan_abc/博文的整理,同时加入了自己的理解.很敬佩fudan_abc的文章,仔细学习和分析受益很多.注:fundan_abc所分析linux ...
- 给 IIS Express 配置虚拟目录
使用 vs2015 打开旧项目,之前使用 iis 配置站点,然后在 vs 中附加 w3wp.exe 进行开发和调试的. 由于种种原因 iis 上配置站点各种失败. 之后发现,其实在 vs2015 中按 ...
- 使用lftp传输文件的shell脚本
学习参考用,需要服务器上安装lftp. #!/bin/bash #date filepath=/usr/hadoop/bigdata/filterurl filtercount=$(ls $filep ...
- OAViewObject中clearCache(),reset(),setMaxFetchSize(-1)的使用
今天在页面跳转之后,明明执行了查询,且查询语句正确的情况下,页面不显示数据,且点击SubmitButton包浏览器后退异常. 代码如下: OAViewObjectImpl vo=(OAViewObje ...