学习RSA公开密钥算法
图为
RSA公开密钥算法的发明人,从左到右Ron Rivest, Adi Shamir, Leonard Adleman.
照片摄于1978年
RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它。但是有不少新来的同事对它不太了解,恰好看到一本书中作者用实例对它进行了简化而生动的描述,使得高深的数学理论能够被容易地理解。我们经过整理和改写特别推荐给大家阅读,希望能够对时间紧张但是又想了解它的同事有所帮助。
RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard
Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的可信性,目前它已经成为最流行的公开密钥算法。
RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。
RSA的公钥、私钥的组成,以及加密、解密的公式可见于下表:
可能各位同事好久没有接触数学了,看了这些公式不免一头雾水。别急,在没有正式讲解RSA加密算法以前,让我们先复习一下数学上的几个基本概念,它们在后面的介绍中要用到:
一、
什么是“素数”?
素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。素数也称为“质数”。
二、什么是“互质数”(或“互素数”)?
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。
判别方法主要有以下几种(不限于此):
(1)两个质数一定是互质数。例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与
26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与
16。
(5)相邻的两个奇数是互质数。如 49与
51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和
16。
(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。
三、什么是模指数运算?
指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod
n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。
模指数运算就是先做指数运算,取其结果再做模运算。如
好,现在开始正式讲解RSA加密算法。
算法描述:
(1)选择一对不同的、足够大的素数p,q。
(2)计算n=pq。
(3)计算f(n)=(p-1)(q-1),同时对p,
q严加保密,不让任何人知道。
(4)找一个与f(n)互质的数e,且1<e<f(n)。
(5)计算d,使得de≡1 mod
f(n)。这个公式也可以表达为d ≡e-1 mod
f(n)
这里要解释一下,≡是数论中表示同余的符号。公式中,≡符号的左边必须和符号右边同余,也就是两边模运算结果相同。显而易见,不管f(n)取什么值,符号右边1
mod
f(n)的结果都等于1;符号的左边d与e的乘积做模运算后的结果也必须等于1。这就需要计算出d的值,让这个同余等式能够成立。
(6)公钥KU=(e,n),私钥KR=(d,n)。
(7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:。
(8)解密过程为:。
实例描述:
在这篇科普小文章里,不可能对RSA算法的正确性作严格的数学证明,但我们可以通过一个简单的例子来理解RSA的工作原理。为了便于计算。在以下实例中只选取小数值的素数p,q,以及e,假设用户A需要将明文“key”通过RSA加密后传递给用户B,过程如下:
(1)设计公私密钥(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3与20互质)则e×d≡1
mod f(n),即3×d≡1 mod 20。
d怎样取值呢?可以用试算的办法来寻找。试算结果见下表:
通过试算我们找到,当d=7时,e×d≡1 mod
f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR
=(d,n)=(7,33)。
(2)英文数字化。
将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值,即:
则得到分组后的key的明文信息为:11,05,25。
(3)明文加密
用户加密密钥(3,33) 将数字化明文分组信息加密成密文。由C≡Me(mod n)得:
因此,得到相应的密文信息为:11,31,16。
(4)密文解密。
用户B收到密文,若将其解密,只需要计算,即:
用户B得到明文信息为:11,05,25。根据上面的编码表将其转换为英文,我们又得到了恢复后的原文“key”。
你看,它的原理就可以这么简单地解释!
当然,实际运用要比这复杂得多,由于RSA算法的公钥私钥的长度(模长度)要到1024位甚至2048位才能保证安全,因此,p、q、e的选取、公钥私钥的生成,加密解密模指数运算都有一定的计算程序,需要仰仗计算机高速完成。
最后简单谈谈RSA的安全性
首先,我们来探讨为什么RSA密码难于破解?
在RSA密码应用中,公钥KU是被公开的,即e和n的数值可以被第三方窃听者得到。破解RSA密码的问题就是从已知的e和n的数值(n等于pq),想法求出d的数值,这样就可以得到私钥来破解密文。从上文中的公式:d
≡e-1 (mod((p-1)(q-1)))或de≡1 (mod((p-1)(q-1)))
我们可以看出。密码破解的实质问题是:从Pq的数值,去求出(p-1)和(q-1)。换句话说,只要求出p和q的值,我们就能求出d的值而得到私钥。
当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。比如当pq大到1024位时,迄今为止还没有人能够利用任何计算工具去完成分解因子的任务。因此,RSA从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。
此外,RSA的缺点还有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n
至少也要 600 bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。因此,使用RSA只能加密少量数据,大量的数据加密还要靠对称密码算法。
学习RSA公开密钥算法的更多相关文章
- RSA非对称算法(转)
RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它.但是有不少新来的同事对它不太了解,恰好看到一本书中作者用实例对它进行了简化而生动的描述,使得高深的数学理论能够被容易地理解.我们经 ...
- 轻松学习RSA加密算法原理 (转)
轻松学习RSA加密算法原理 (转) http://blog.csdn.net/q376420785/article/details/8557266 http://www.ruanyifeng.com/ ...
- 基于python的RSA解密算法
摘要 网上有很多关于RSA的解密脚本,欧拉函数.欧几里得函数什么的,对于一个大专生的我来说,一窍不通,至此经历了三天三夜,我翻阅了RSA的加密原理,以及其底层算法,专研出了一套我自己的解密算法,尚有不 ...
- 在Object-C中学习数据结构与算法之排序算法
笔者在学习数据结构与算法时,尝试着将排序算法以动画的形式呈现出来更加方便理解记忆,本文配合Demo 在Object-C中学习数据结构与算法之排序算法阅读更佳. 目录 选择排序 冒泡排序 插入排序 快速 ...
- 集成学习值Adaboost算法原理和代码小结(转载)
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...
- TensorFlow入门学习(让机器/算法帮助我们作出选择)
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量 ...
- 深度学习 目标检测算法 SSD 论文简介
深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf Slides:http://w ...
- [ML学习笔记] XGBoost算法
[ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这 ...
- 【StatLearn】统计学习中knn算法实验(2)
接着统计学习中knn算法实验(1)的内容 Problem: Explore the data before classification using summary statistics or vis ...
随机推荐
- 关于Asp.Net Mvc3.0 使用KindEditor4.0 上传图片与文件
http://blog.csdn.net/fyxq14hao/article/details/7245502 今天我们的Asp.Net Mvc 3的项目中,把KindEditor3.9改为 KindE ...
- jdk版本
windows: set java_home:查看JDK安装路径 java -version:查看JDK版本 linux: whereis java which java (java执行路径) ech ...
- PHP高效率写法(详解原因)
1.尽量静态化: 如果一个方法能被静态,那就声明它为静态的,速度可提高1/4,甚至我测试的时候,这个提高了近三倍.当然了,这个测试方法需要在十万级以上次执行,效果才明显.其实静态方法和非静态方法的效率 ...
- LWP 轻量级线程的意义与实现
转子 http://www.ibm.com/developerworks/cn/linux/kernel/l-thread/ 二.Linux 2.4内核中的轻量进程实现 最初的进程定义都包含程序.资源 ...
- sqlplus 配置方法及相关命令
sqlplus 配置方法及相关命令 1.配置文件 1.1 全局模式什么叫全局模式呢:当我们配置完sqlplus工具加载配置文件后,无论在哪个目录下登陆数据库,您设置[sqlplus提示符样子,在任何目 ...
- R语言操作数据库
以下内容出自http://www.douban.com/note/172387172/ CRAN上有很多R的数据库支持包,使R能够对数据库进行读写操作.这些包有:RODBC.DBI.RMySQL.RO ...
- 再谈对协变和逆变的理解(Updated)
去年写过一篇博客谈了下我自己对协变和逆变的理解,现在回头看发现当时还是太过“肤浅”,根本没理解.不久前还写过一篇“黑”Java泛型的博客,猛一回头又是“肤浅”,今天学习Java泛型的时候又看到了协变和 ...
- explode 和 implode
<?php $str = "HellooooLAAAAAALleeellll33432ll!"; //字符拆分,当2个“l”并列出现,元素结果是空格“ ”,所有的结果是一维数 ...
- Hadoop日记Day1---Hadoop介绍
一.Hadoop项目简介 1. Hadoop是什么 Hadoop是一个适合大数据的分布式存储与计算平台. 作者:Doug Cutting:Lucene,Nutch. 受Google三篇论文的启发 2. ...
- php面试题之四——PHP面向对象(基础部分)
四.PHP面向对象 1. 写出 php 的 public.protected.private 三种访问控制模式的区别(新浪网技术部) public:公有,任何地方都可以访问 protected:继承, ...