zjnu1749 PAROVI (数位dp)
Description
The distance between two integers is defined as the sum of the absolute result of subtracting their digits. For example, the distance between the numbers 4561 and 3278 is |4 – 3| + |5 - 2| + |6 - 7| + |1 - 8| = 12. If one of the numbers consists of fewer
digits than the other, we fill it with leading zeroes. Therefore, the distance between the numbers 32 and 5678 is |0 - 5| + |0 - 6| + |3 - 7| + |2 - 8| = 21.
You are given two integers A and B. Calculate the sum of distances between each pair of numbers belonging in the interval [A, B]!
Input
The first and only line of input contains integers A, B (1 ≤ A ≤ B ≤ 10^50000).
Output
The first and only line of output must contain the required number from the text. Given that the number could be extremely large, output answer modulo 1 000 000 007.
Sample Input
Sample Output
题意:定义两个数的距离是这两个数化成十进制后每一位上的数字差的绝对值,如果两个数长度不同,小的那个数用前导零补齐,现在给你两个数A,B,问[A,B]中所有取两个数情况的距离和 。
思路:观察可以发现,[A,B]区间内的距离和是每一位累加得到的,所以我们可以把每一位的sum统计出来。对于每一位,又可以发现,这一位的距离和等于num[0]*num[1]*(1-0)+num[0]*num[2]*(2-0)+...+num[8]*num[9]*(9-8),所以我们要算出每一位上0~9出现的次数。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 1100000000
#define pi acos(-1.0)
#define maxn 1005
#define MOD 1000000007
#define NN 50000
char s1[50050],s2[50050];
ll num[50050][10],num1[50050][10],num2[50050][10];
ll sumpre[50050],sumsuf[50050];
ll po[50050];
int len;
void init()
{
int i,j;
po[0]=1;
for(i=1;i<=NN;i++){
po[i]=(po[i-1]*10)%MOD;
}
}
void cal1(int len1)
{
int i,j;
sumpre[len1+1]=0;
for(i=len1;i>=1;i--){
sumpre[i]=(sumpre[i+1]*10+s1[i]-'0')%MOD;
}
sumsuf[0]=0;
for(i=1;i<=len1;i++){
sumsuf[i]=(sumsuf[i-1]+(s1[i]-'0')*po[i-1] )%MOD;
for(j=0;j<=9;j++){
if(j+'0'<s1[i]){
num1[i][j]=( (sumpre[i+1]+1)*po[i-1] )%MOD;
}
else if(j+'0'==s1[i]){
num1[i][j]=( sumpre[i+1]*po[i-1]%MOD+sumsuf[i-1]+1 )%MOD;
}
else if(j+'0'>s1[i]){
if(i==len1)num1[i][j]=0;
else num1[i][j]=( sumpre[i+1]*po[i-1] )%MOD;
}
}
}
for(i=len1+1;i<=len;i++){
num1[i][0]=sumsuf[len1]+1;
for(j=1;j<=9;j++)num1[i][j]=0;
}
}
void cal2(int len2)
{
int i,j;
sumpre[len2+1]=0;
for(i=len2;i>=1;i--){
sumpre[i]=(sumpre[i+1]*10+s2[i]-'0')%MOD;
}
sumsuf[0]=0;
for(i=1;i<=len2;i++){
sumsuf[i]=(sumsuf[i-1]+(s2[i]-'0')*po[i-1] )%MOD;
for(j=0;j<=9;j++){
if(j+'0'<s2[i]){ //这里如果当要算的值小于该位的值,那么num2[i][j]=(前面的数+1)*(10^(i-1) )
num2[i][j]=( (sumpre[i+1]+1)*po[i-1] )%MOD;
}
else if(j+'0'==s2[i]){ //这里如果当要算的值等于该位的值,那么num2[i][j]=前面的数*(10^(i-1) )+后面的数+1
num2[i][j]=( sumpre[i+1]*po[i-1]%MOD+sumsuf[i-1]+1 )%MOD;
}
else if(j+'0'>s2[i]){ //这里如果当要算的值大于该位的值,如果这位是最高位,那么num2[i][j]=0,否则num2[i][j]+=前面的数*(10^(i-1) )
if(i==len2)num2[i][j]=0;
else num2[i][j]=( sumpre[i+1]*po[i-1] )%MOD;
}
}
}
for(i=len2+1;i<=len;i++){
num2[i][0]=sumsuf[len2]+1;
for(j=1;j<=9;j++)num2[i][j]=0;
}
}
int main()
{
int n,m,i,j,len1,len2,k;
init();
while(scanf("%s%s",s1+1,s2+1)!=EOF)
{
len1=strlen(s1+1);
len2=strlen(s2+1);
reverse(s1+1,s1+1+len1); //因为算的是[A,B]间的数字个数,所以我们可以用[0,B]-[0,A-1]的,所以要先把A-1。
for(i=1;i<=len1;i++){
if(s1[i]>'0')break;
}
if(i==len1 && s1[i]=='1'){
len1--;
}
s1[i]=s1[i]-1;
for(j=1;j<i;j++){
s1[j]='9';
}
reverse(s2+1,s2+1+len2);
len=max(len1,len2);
cal1(len1);
cal2(len2);
ll sum=0;
for(i=1;i<=len;i++){
for(j=0;j<=9;j++){
num[i][j]=num2[i][j]-num1[i][j];
if(num[i][j]<0)num[i][j]+=MOD;
}
for(j=0;j<=9;j++){
for(k=j+1;k<=9;k++){
sum=(sum+num[i][k]*num[i][j]*(k-j)%MOD )%MOD;
}
}
}
printf("%lld\n",sum*2%MOD);
}
}
/*
1234 9999999
859571453
55 100
10810
*/
zjnu1749 PAROVI (数位dp)的更多相关文章
- 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP
[BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...
- bzoj1026数位dp
基础的数位dp 但是ce了一发,(abs难道不是cmath里的吗?改成bits/stdc++.h就过了) #include <bits/stdc++.h> using namespace ...
- uva12063数位dp
辣鸡军训毁我青春!!! 因为在军训,导致很长时间都只能看书yy题目,而不能溜到机房鏼题 于是在猫大的帮助下我发现这道习题是数位dp 然后想起之前讲dp的时候一直在补作业所以没怎么写,然后就试了试 果然 ...
- HDU2089 不要62[数位DP]
不要62 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 数位DP GYM 100827 E Hill Number
题目链接 题意:判断小于n的数字中,数位从高到低成上升再下降的趋势的数字的个数 分析:简单的数位DP,保存前一位的数字,注意临界点的处理,都是套路. #include <bits/stdc++. ...
- 数位dp总结
由简单到稍微难点. 从网上搜了10到数位dp的题目,有几道还是很难想到的,前几道基本都是模板题,供入门用. 点开即可看题解. hdu3555 Bomb hdu3652 B-number hdu2089 ...
- 数位DP入门
HDU 2089 不要62 DESC: 问l, r范围内的没有4和相邻62的数有多少个. #include <stdio.h> #include <string.h> #inc ...
- 数位DP之奥义
恩是的没错数位DP的奥义就是一个简练的dfs模板 int dfs(int position, int condition, bool boundary) { ) return (condition ? ...
- 浅谈数位DP
在了解数位dp之前,先来看一个问题: 例1.求a~b中不包含49的数的个数. 0 < a.b < 2*10^9 注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字, ...
随机推荐
- JavaScript 获取当天0点以及当前时间方法
js 取得今天0点: const start = new Date(new Date(new Date().toLocaleDateString()).getTime()); console.log( ...
- SonarQube学习(六)- SonarQube之扫描报告解析
登录http://192.16.1.105:9000,加载项目扫描情况 点击项目名称,查看报告总览 开发人员主要关注为[问题]标签页. 类型 主要关注为bug和漏洞. 其中bug是必须要修复的,漏洞是 ...
- python_元组(tuple)
#tuple(),元组不可以修改,不能对其进行增加或删除操作,元组是有序的 #1.定义 tu_1 = () #定义一个空元组 tu_2 = (1,2,'alex',[3,4],(5,6,7),True ...
- Linux学习笔记 | 常见错误之VMware启动linux后一直黑屏
方法1: 宿主机(windows)管理员模式运行cmd 输入netsh winsock reset 然后重启电脑 netsh winsock reset命令,作用是重置 Winsock 目录.如果一台 ...
- 断言封装整合到requests封装中应用(纠错False,Result循环,tag测试)
检查json_key_value: 检查: requests.py # -*- coding: utf-8 -*-#@File :demo_04.py#@Auth : wwd#@Time : 2020 ...
- mac安装Navicat Premium Mac 12 破解版
参考:https://www.cnblogs.com/lyfstorm/p/11123159.html 激活后:
- Netty学习:EventLoop事件机制
目录 EventLoop是什么 EventLoop适用的场景 Netty中的EventLoop Netty中的大量inEventLoop判断 Netty是如何建立连接并监听端口的-NIOSocketC ...
- 三种梯度下降算法的区别(BGD, SGD, MBGD)
前言 我们在训练网络的时候经常会设置 batch_size,这个 batch_size 究竟是做什么用的,一万张图的数据集,应该设置为多大呢,设置为 1.10.100 或者是 10000 究竟有什么区 ...
- CodeMonkey少儿编程第2章 turnTo对象
目标 了解对象的概念 了解方法与对象的关系 掌握turnTo指令的用法 在开始本章的学习之前,我们先来复习一下上一章的知识点. 在第1章中,我们学会了在这个游戏中最简单的两个指令. step x 其中 ...
- cfsetispeed、cfsetospeed和cfsetspeed探究
在我https://www.cnblogs.com/Suzkfly/p/11055532.html这篇博客中有一个疑问,就是在串口设置波特率的域中,没有将输入输出波特率分开,那为什么会有几个不同的设置 ...