k_means算法+python实现
文章目录
一、原理
K均值算法使用的聚类准则函数是误差平方和准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的距离平方和达到最小。
二、算法步骤
设迭代次数 r = 0
- 如果把数据分成k个类,则第一步选前k个点作为第一批聚类中心:Z1(r ),Z2(r )…Zk(r )
- 将所有的数据与各个聚类中心求距离(根据实际情况选择欧式、马氏等距离),然后将各数据点分配到离自己最近的聚类中心(相当于分类)。
- 对于分好的类,求每个类的重心,作为新的聚类中心。获得新一批的聚类中心Z1(r+1)、Z2(r+1)…Zk(r+1)
- 如果新一批的聚类中心与上一批的聚类中心完全相等,则停止迭代,否则重复步骤2~4
三、实例如下:
根据调查得到某地10所学校的数据(见下表),试采用k_means算法编写程序,将这些学校按三种类别聚类。
四、python代码实现:
import numpy as np
'''
k-means算法
'''
#标签
label_set = [
'学校1','学校2','学校3','学校4','学校5',
'学校6','学校7','学校8','学校9','学校10'
]
#数据
data_set = np.array([
[2088,562.05,42,434],
[10344.8,4755,76,1279],
[2700,4100,56,820],
[3967,3751,67,990],
[5850.24,6173.25,78,1240],
[1803.26,5224.99,72,1180],
[2268,8011,56,800],
[32000,18000,200,2000],
[100000,30000,200,1100],
[173333,60000,420,2552]
])
#标准化
def normal_dataSet(data_set):
mean = np.mean(data_set,axis=0)
std = np.std(data_set,axis=0)
dataSet = (data_set-mean)/std
return dataSet
#计算欧氏距离
def O_distance(x, y):
dis = np.sqrt(np.sum(np.square(x-y)))
return dis
#第一步获取聚类中心(直接获取前k个作为中心)
def get_cluster_center(dataSet, k):
Z = []
for i in range(k):
Z.append(dataSet[i])
return np.array(Z)
#根据离聚类中心Z的距离分类
def classify(dataSet, Z):
result = {}
for i in range(len(Z)):
result['第'+str(i+1)+'类'] = []
for j in range(len(dataSet)):
min_class = 0 #初始类
min_dis = O_distance(dataSet[j],Z[0]) #初始最小的距离
for i in range(len(Z)):
dis = O_distance(dataSet[j],Z[i])
min_dis = dis if dis < min_dis else min_dis
if(min_dis == dis):
min_class = i
result['第'+str(min_class+1)+'类'].append(j)
return result
#获取新的聚类中心
def get_new_cluster_center(result,dataSet):
Z=[]
new_result = {}
#因为result保存的是各类别对应的各点在dataSet的下标
#需要将下标转化为dataSet中实际值
for key in result.keys():
new_result[key] = []
for index in result[key]:
new_result[key].append(dataSet[index])
avg = np.mean(np.array(new_result[key]),axis=0)
Z.append(avg)
return np.array(Z)
#k_means算法,将数据集分成k份
def k_means(dataSet, k):
result = {} #分类结果
Z = get_cluster_center(dataSet, k) #初始的聚类中心
result = classify(dataSet, Z) #第一次分类
old_Z = Z
new_Z = get_new_cluster_center(result,dataSet) #获取新的聚类中心
#迭代
while ((old_Z!=new_Z).any()):
result = classify(dataSet, new_Z)
old_Z = new_Z.copy()
new_Z = get_new_cluster_center(result,dataSet)
return result
# k_means(data_set_1,None,2)
dataSet = normal_dataSet(data_set)#标准化处理
result = k_means(dataSet ,3)#分步聚类
#打印分类结果
for key in result.keys():
print(key,end=': ')
for index in result[key]:
print(label_set[index],end=' ')
print()
运行结果如下:
第1类: 学校1
第2类: 学校8 学校9 学校10
第3类: 学校2 学校3 学校4 学校5 学校6 学校7
k_means算法+python实现的更多相关文章
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- k_means算法的C++实现
首先画出k_means算法的流程图:
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- 多语言工作者の十日冲刺<6/10>
这个作业属于哪个课程 软件工程 (福州大学至诚学院 - 计算机工程系) 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 团队进行Alpha冲刺--第六天(05.05) 作业正文 ...
- kubernetes资源均衡器Descheduler
背景 Kubernetes中的调度是将待处理的pod绑定到节点的过程,由Kubernetes的一个名为kube-scheduler的组件执行.调度程序的决定,无论是否可以或不能调度容器,都由其可配置策 ...
- .NET高级调试系列-Windbg调试入门篇
Windbg是.NET高级调试领域中不可或缺的一个工具和利器,也是日常我们分析解决问题的必备.准备近期写2篇精华文章,集中给大家分享一下如果通过Windbg进行.NET高级调试. 今天我们来一篇入门的 ...
- 实战笔记丨JDBC问题定位指南
JDBC(Java数据库连接性)是Java API,用于管理与数据库的连接,发出查询和命令以及处理从数据库获得的结果集.JDBC在1997年作为JDK 1.1的一部分发布,是为Java持久层开发的首批 ...
- 01 . Shell详细入门介绍及简单应用
Shell简介 Shell 是一个 C 语言编写的脚本语言,它是用户与 Linux 的桥梁,用户输入命令交给 Shell 解释处理Shell 将相应的操作传递给内核(Kernel),内核把处理的结果输 ...
- Azure Monitor(二)Log Analytics
一,引言( 前情回顾) Azure Monitor 包括 Log Analytics 和 Application Insights,其提供的高级工具适用于收集和分析遥测数据,以便最大程度地提高云和本地 ...
- USACO07NOV Cow Relays G 题解
题目 For their physical fitness program, \(N (2 ≤ N ≤ 1,000,000)\) cows have decided to run a relay ra ...
- 洛谷 P3627 [APIO2009]抢掠计划 Tarjan缩点+Spfa求最长路
题目地址:https://www.luogu.com.cn/problem/P3627 第一次寒假训练的结测题,思路本身不难,但对于我这个码力蒟蒻来说实现难度不小-考试时肛了将近两个半小时才刚肛出来. ...
- 工作那么久,才知道的 SOLID 设计原则
认识 SOLID 原则 无论是软件系统设计,还是代码实现,遵循有效和明确的设计原则,都利于系统软件灵活可靠,安全快速的落地,更重要的是能灵活地应对需求,简化系统扩展和维护,避免无效的加班.本文主要讨论 ...
- Jmeter系列(39)- Jmeter 分布式测试
如果你想从头学习Jmeter,可以看看这个系列的文章哦 https://www.cnblogs.com/poloyy/category/1746599.html 为什么要做分布式 Jmeter 本身的 ...