LINK:qiqi20021026的T1



考场上只拿到了50分的\(nq\)暴力。

考虑一个区间和一个区间配对怎么做 二分图最大带权匹配复杂度太高。

先考虑LCS的问题 常见解决方法是后缀数组/trie树.

一个贪心是 每次让贡献最大的一对配对是最优的策略。

具体证明可以利用扰动法 或者观察法。

即设\(p,q,l,r\) 分类讨论一下情况就行辣 怎么证明全局最优?可以发现任意两个匹配都是这样最优 交换会变得更差 这样应该可以说明全局最优了吧?

这个贪心直接做复杂度还是很高 可以考虑trie树上做 那么就是在LCA处匹配 匹配不了到父亲处.

这样复杂度就是\(n\cdot q\)的了.

考虑正解:写完暴力我一度认为这题感觉是一个二维莫队。

但是我发现每次多加一个字符串的贡献非常难处理 所以就不会了。

一个非常套路 且我见过很多次就是没反应过来的套路 是 观察这个贡献 后缀长度 其实可以均摊到路径上的节点上.

即对于每个节点取 min(a,b)即可得到贡献。

这样一个串就对应到了一条路径上 且每个节点的min(a,b)这种贡献都是可以O(1)计算的。

然后考虑莫队 直接 序列上(trie树此时其实也是一个序列)莫队+序列上莫队 这样一共存在四个指针。

分块的大小要调整好 可以奇偶优化分块 复杂度不太清楚 (反正轻轻松松跑过5e5

code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
#define len(x) t[x].len
using namespace std;
//无奈 太菜了 签到题都只能暴力 我真是个弱智./kk
const int MAXN=10010,maxn=500010;
int n,Q,len,cnt,ans,id=1,B=100;
int t[MAXN][26],pos[MAXN],sum[maxn],wl[MAXN],wr[MAXN],c[MAXN];
struct wy{int l,r,L,R,id;}q[maxn];
string a;
inline void insert()
{
int now=1;
vep(0,a.size(),i)
{
int ww=a[i]-'a';
if(!t[now][ww])t[now][ww]=++id;
now=t[now][ww];pos[++cnt]=now;
}
}
inline int cmp(wy a,wy b)
{
if(a.l/B!=b.l/B)return a.l<b.l;
if(a.r/B!=b.r/B)return a.l/B&1?a.r<b.r:a.r>b.r;
if(a.L/B!=b.L/B)return a.r/B&1?a.L<b.L:a.L>b.L;
return a.L/B&1?a.R<b.R:a.R>b.R;
}
inline void add(int x)
{
++c[pos[x]]>0?++ans:--ans;
}
inline void del(int x)
{
--c[pos[x]]<0?++ans:--ans;
}
int main()
{
//freopen("1.in","r",stdin);
freopen("qiqi.in","r",stdin);
freopen("qiqi.out","w",stdout);
ios::sync_with_stdio(false);
cin>>n>>Q;
rep(1,n,i)
{
a="";cin>>a;
reverse(a.begin(),a.end());
wl[i]=cnt+1;insert();wr[i]=cnt;
}
rep(1,Q,i)
{
int l,r;cin>>l>>r;
q[i].l=wl[l];q[i].r=wr[r];
sum[i]+=wr[r]-wl[l]+1;
cin>>l>>r;q[i].id=i;
q[i].L=wl[l];q[i].R=wr[r];
sum[i]+=wr[r]-wl[l]+1;
}
sort(q+1,q+1+Q,cmp);
int l=1,r=0,L=1,R=0;
rep(1,Q,i)
{
while(l>q[i].l)add(--l);
while(l<q[i].l)del(l),++l;
while(L>q[i].L)del(--L);
while(L<q[i].L)add(L),++L;
while(r<q[i].r)add(++r);
while(r>q[i].r)del(r),--r;
while(R<q[i].R)del(++R);
while(R>q[i].R)add(R),--R;
sum[q[i].id]-=ans;
}
rep(1,Q,i)put(sum[i]>>1);
return 0;
}

7.11 NOI模拟赛 qiqi20021026的T1 四个指针莫队 trie树的更多相关文章

  1. 7.11 NOI模拟赛 graph 生成函数 dp 多项式

    LINK:graph HDU题库里的原题 没做过自闭. 考虑dp 设\(f_{i,j}\)表示前i个点构成j个联通块是树的方案数. 对于一次询问答案即为\(\sum_{j}f_{n,j}j^k\) 考 ...

  2. 9.11 myl模拟赛

    9.11 myl 模拟赛 100 + 100 + 0 第一题耗费了太多的时间,导致最后一题没有时间想,直接去写了暴力,而且出题人没有给暴力分.... Problem 1. superman [题目描述 ...

  3. 「CSP-S模拟赛」2019第四场

    「CSP-S模拟赛」2019第四场 T1 「JOI 2014 Final」JOI 徽章 题目 考场思考(正解) T2 「JOI 2015 Final」分蛋糕 2 题目 考场思考(正解) T3 「CQO ...

  4. NOI模拟赛 Day1

    [考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...

  5. 6.28 NOI模拟赛 好题 状压dp 随机化

    算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...

  6. NOI模拟赛Day5

    T1 有and,xor,or三种操作,每个人手中一个数,求和左边进行某一种运算的最大值,当t==2时,还需要求最大值的个数. test1 20% n<=1000 O(n^2)暴力 test2 2 ...

  7. 【2018.12.17】NOI模拟赛4

    题目 WZJ题解 T1 T2 T3 后缀自动机+($parents$ 树)树链剖分 发现有大量子串需要考虑,考虑摁死子串的一端. 首先,这题显然是一道离线题,因为所有的询问都是 $1$ 到 某个数,也 ...

  8. NOI.AC省选模拟赛第一场 T1 (树上高斯消元)

    link 很容易对于每个点列出式子 \(f_{x,y}=(f_{x,y-1}+f_{x,y}+f_{x,y+1}+f_{x+1,y})/4\)(边角转移类似,略) 这个转移是相互依赖的就gg了 不过你 ...

  9. 2017.6.11 NOIP模拟赛

    题目链接: http://files.cnblogs.com/files/TheRoadToTheGold/2017-6.11NOIP%E6%A8%A1%E6%8B%9F%E8%B5%9B.zip 期 ...

随机推荐

  1. css3增加的的属性值position:stricky

    position:sticky sticky 英文字面意思是粘,粘贴.这是一个结合了 position:relative 和 position:fixed 两种定位功能于一体的特殊定位,适用于一些特殊 ...

  2. [POI2014]FAR-FarmCraft (树规+贪心)

    题干 In a village called Byteville, there are houses connected with N-1 roads. For each pair of houses ...

  3. 查看windows操作系统的默认编码

    转自:https://blog.csdn.net/zp357252539/article/details/79084480/ 在Windows平台下,进入DOS窗口,输入:chcp 可以得到操作系统的 ...

  4. input type=file过滤图片

    <input type="file" accept=".png,.jpg,.jpeg,image/png,image/jpg,image/jpeg"> ...

  5. java 基本语法(十三) 数组(六)数组的常见异常

    1.数组角标越界异常:ArrayIndexOutOfBoundsException int[] arr = new int[]{1,2,3,4,5}; // for(int i = 0;i <= ...

  6. pytest框架的安装与使用

    pytest框架的安装与使用 一,pytest了解 pytest是python的一种单元测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,效率更高. ...

  7. JavaScript 基础 学习 (一)

    JavaScript 基础 学习 获取页面中的元素的方法 作用:通过各种方式获取页面中的元素 ​ 比如:id,类名,标签名,选择器 的方式来获取元素 ​ 伪数组: ​ 长的和数组差不多,也是按照索引排 ...

  8. Python Ethical Hacking - VULNERABILITY SCANNER(3)

    Polish the Python code using sending requests in a session Class Scanner. #!/usr/bin/env python impo ...

  9. js 或Jquery操作定位元素

    属性过滤常用javascript后去DOM对象 id是定位到的是单个element元素对象,其它的都是elements返回的是list对象 1.通过id获取 document.getElementBy ...

  10. CSS:有点难的面试题①

    1 举例说明匿名块框和匿名行内框2 什么是标准文档流?3 inline-block遵循怎样的渲染规则?4 什么是BFC?如何触发BFC?5 什么是Line box?(最好画图说明) 6 <met ...