LINK:小B的棋盘



考试的时候没有认真的思考 导致没做出来.

容易发现 当k>=n的时候存在无限解 其余都存在有限解

对于30分 容易想到暴力枚举 对称中心 然后 n^2判断.

对于前者 容易发现 对称中心为某个点或某两个点的中点 对于后者 可以发现排序过后双指针可以做。

双指针做的时候还是存在一些小细节的(爆零警告 两种属性 不可以随便判断就跳指针 得根据自己排序的顺序来判断是否跳指针.

拿到30之后还是考虑 对称中心的问题.

对于 一些点对的中点或者一些点当对称中心 显然是不合法的 如 以某个点为对称中心的时候的四个象限画出来 然后 很容易发现端倪。

且 最后最多只有k个点可以不匹配 且匹配的时候的点对也有相对顺序的关系.

如 左下方的点一定是和右上方的点尽可能匹配的 类似等等...

特殊的 考虑 最靠下且尽可能靠左的k+1个点 一定和 相对的 最靠上且尽可能靠右的k+1个点之间存在匹配关系。

如果没有一对存在 那么显然不存在合法解 存在的话我们直接进行判定 这样就把刚才n^2的点集变成了 k^2的点集。

带上双指针就是nk^2的了.

由此推测 这道题的60分做法是希望我们写一个hash来判断重复而不是sort 这样做的话 点集被缩小为k^2.

值得一提的是 这样还是存在一个比较常见的check 虽然两点的中点坐标公式需要/2 但是可以都乘以2 来更好的避免小数误差.

const int MAXN=100010,G=3;
int n,k,cnt,ans;
struct wy{int x,y;}t[MAXN],w[MAXN];
inline int cmp(wy a,wy b){return a.y==b.y?a.x<b.x:a.y<b.y;}
inline int pd(wy a,wy b){return a.x==b.x&&a.y==b.y;}
inline int calc(int x,int y)
{
int l=1,r=n,cnt=0;
while(l<=r)
{
if(l==r)
{
if(t[l].x*2!=x||t[r].y*2!=y)++cnt;
break;
}
if(t[l].x+t[r].x==x&&t[r].y+t[l].y==y)++l,--r;
else
{
++cnt;
if(t[r].y>y-t[l].y)--r;
else
{
if(t[r].y==y-t[l].y)
{
if(t[r].x>x-t[l].x)--r;
else ++l;
}
else ++l;
}
}
}
return cnt<=k;
}
int main()
{
freopen("1.in","r",stdin);
//freopen("a.out","w",stdout);
get(n);get(k);
if(k>=n){puts("-1");return 0;}
rep(1,n,i)
{
int get(x),get(y);
t[i]=(wy){x,y};
}
sort(t+1,t+1+n,cmp);
rep(1,k+1,i)rep(n-k,n,j)w[++cnt]=(wy){t[i].x+t[j].x,t[i].y+t[j].y};
sort(w+1,w+1+cnt,cmp);
rep(1,cnt,i)
{
if(i!=1&&pd(w[i],w[i-1]))continue;
ans+=calc(w[i].x,w[i].y);
}
put(ans);
return 0;
}

5.19 省选模拟赛 T1 小B的棋盘 双指针 性质的更多相关文章

  1. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  2. 5.19 省选模拟赛 小B的夏令营 概率 dp 前缀和优化dp

    LINK:小B的夏令营 这道题是以前从没见过的优化dp的方法 不过也在情理之中. 注意读题 千万不要像我这个sb一样 考完连题意都不知道是啥. 一个长方形 要求从上到下联通的概率. 容易发现 K天只是 ...

  3. 5.19 省选模拟赛 小B的图 最小生成树 LCT

    LINK:小B的图 这道题就比较容易了. 容易想到将询问离线 然后 从小到大排序 那么显然是优先放正图(x+k)的边. 考虑随着x的增大 那么负图上的边会逐渐加进来 一条边被加进来当且仅当 其权值小于 ...

  4. 「HGOI#2019.4.19省选模拟赛」赛后总结

    t1-Painting 这道题目比较简单,但是我比较弱就只是写了一个链表合并和区间DP. 别人的贪心吊打我的DP,嘤嘤嘤. #include <bits/stdc++.h> #define ...

  5. 5.20 省选模拟赛 T1 图 启发式合并 线段树合并 染色计数问题

    LINK:图 在说这道题之前吐槽一下今天的日子 520 = 1+1+4+514. /cy 这道题今天做的非常失败 一点分都没拿到手 关键是今天的T3 把我整个人给搞崩了. 先考虑 如果得到了这么一张图 ...

  6. 5.15 省选模拟赛 T1 点分治 FFT

    LINK:5.15 T1 对于60分的暴力 都很水 就不一一赘述了. 由于是询问所有点的这种信息 确实不太会. 想了一下 如果只是询问子树内的话 dsu on tree还是可以做的. 可以自己思考一下 ...

  7. NOI 2019 省选模拟赛 T1【JZOJ6082】 染色问题(color) (多项式,数论优化)

    题面 一根长为 n 的无色纸条,每个位置依次编号为 1,2,3,-,n ,m 次操作,第 i 次操作把纸条的一段区间 [l,r] (l <= r , l,r ∈ {1,2,3,-,n})涂成颜色 ...

  8. 洛谷[LnOI2019]长脖子鹿省选模拟赛t1 -> 快速多项式变换

    快速多项式 做法:刚拿到此题有点蒙,一开始真没想出来怎么做,于是试着去自己写几个例子. 自己枚举几种情况之后就基本看出来了,其实本题中 n 就是f(m)在m进制下的位数,每项的系数就是f(m)在m进制 ...

  9. 【20170920校内模拟赛】小Z爱学习

    所有题目开启-O2优化,开大栈空间,评测机效率为4亿左右. T1 小 Z 学数学(math) Description ​ 要说小 Z 最不擅长的学科,那一定就是数学了.这不,他最近正在学习加法运算.老 ...

随机推荐

  1. css实现自适应正方形的多种方法实现

    方案一:CSS3 vw 单位 CSS3 中新增了一组相对于可视区域百分比的长度单位vw.vh.vmin.vmax.其中vw是相对于视口宽度百分比的单位,1vw = 1% viewport width, ...

  2. 二分查找&二叉排序树

    首先我们先来复习一下二分查找的算法 对于正向序列的二分查找 递归实现: bool binary_search(vector<int> &sort_arry,int begin,in ...

  3. Qt-文件系统

    1  简介 参考视频:https://www.bilibili.com/video/BV1XW411x7NU?p=45 参考文档:<Qt教程.docx> 说明:本文主要介绍Qt的文件系统. ...

  4. for of

    1. 遍历范围 for...of 循环可以使用的范围包括: 数组 Set Map 类数组对象,如 arguments 对象.DOM NodeList 对象 Generator 对象 字符串 2. 优势 ...

  5. SQL列转行,行转列实现

    在工作中,大家可能会遇到一些SQL列转行.行转列的问题,恰好,我也遇到了,就在此记录一下.此处所用的是SQLServer2008R2. 行转列,列转行,都要预先知道要要处理多少数据,在此我就以三种方案 ...

  6. 机器学习实战基础(十九):sklearn中数据集

    sklearn提供的自带的数据集   sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在 ...

  7. softmax、cross entropy和softmax loss学习笔记

    之前做手写数字识别时,接触到softmax网络,知道其是全连接层,但没有搞清楚它的实现方式,今天学习Alexnet网络,又接触到了softmax,果断仔细研究研究,有了softmax,损失函数自然不可 ...

  8. 精通java并发-synchronized关键字和锁

    目前CSDN,博客园,简书同步发表中,更多精彩欢迎访问我的gitee pages synchronized关键字和锁 示例代码 public class MyThreadTest2 { public ...

  9. vue 实现滑块验证码

    图一为拖拽前效果,图二为拖拽后效果 一.新建文件JcRange.vue,代码如下: 1.模板代码: <template> <div class="jc-component_ ...

  10. 将ipynb文件转换为markdown

    jupyter nbconvert --to markdown "3.11-matplotlib 基础.ipynb"