导包
import numpy as np
创建二维数组
x = np.matrix([[1,2,3],[4,5,6]])
创建一维数组
y = np.matrix([1,2,3,4,5,6])
x 的第二行第二列元素
x[1,1]
矩阵的乘法
x*y
# 相关系数矩阵,可使用在列表元素数组矩阵
# 负相关
np.corrcoef([1,2,3],[8,5,4])
'''
array([[ 1. , -0.96076892],
[-0.96076892, 1. ]])
'''
# 正相关
np.corrcoef([1,2,3],[4,5,7])
'''
array([[1. , 0.98198051],
[0.98198051, 1. ]])
'''
矩阵的方差
np.cov([1,1,1,1,1])
矩阵的标准差
np.std([1,1,1,1,1])
垂直堆叠矩阵
z = np.vstack((x,y))
矩阵的协方差
np.cov(z)
np.cov(x,y)
标准差
np.std(z)
列向标准差
np.std(z,axis = 1)
方差
np.cov(x)
特征值和特征向量
A = np.array([[1,-3,3],[3,-5,3],[6,-6,4]])
e,v = np.linalg.eig(A)
e 为特征值, v 为特征向量
矩阵与特征向量的乘积
np.dot(A,v)
特征值与特征向量的乘积
e * v
验证两个乘积是否相等
np.isclose(np.dot(A,v),(e * v))
行列式 |A - λE| 的值应为 0
np.linalg.det(A-np.eye(3,3)*e)
逆矩阵
y = np.linalg.inv(x)
矩阵的乘法(注意先后顺序)
x * y
'''
matrix([[ 1.00000000e+00, 5.55111512e-17, 1.38777878e-17],
[ 5.55111512e-17, 1.00000000e+00, 2.77555756e-17],
[ 1.77635684e-15, -8.88178420e-16, 1.00000000e+00]])
'''
y * x
'''
matrix([[ 1.00000000e+00, -1.11022302e-16, 0.00000000e+00],
[ 8.32667268e-17, 1.00000000e+00, 2.22044605e-16],
[ 6.93889390e-17, 0.00000000e+00, 1.00000000e+00]])
'''
求解线性方程组
a = np.array([[3,1],[1,2]])
b = np.array([9,8])
x = np.linalg.solve(a,b)

最小二乘解:返回解,余项,a 的秩,a 的奇异值
np.linalg.lstsq(a,b)
# (array([2., 3.]), array([], dtype=float64), 2, array([3.61803399, 1.38196601]))
计算向量和矩阵的范数
x = np.matrix([[1,2],[3,-4]]) np.linalg.norm(x)
# 5.477225575051661 np.linalg.norm(x,-2)
# 1.9543950758485487 np.linalg.norm(x,-1)
# 4.0 np.linalg.norm(x,1)
# 6.0 np.linalg.norm([1,2,0,3,4,0],0)
# 4.0 np.linalg.norm([1,2,0,3,4,0],2)
# 5.477225575051661
奇异值分解
a = np.matrix([[1,2,3],[4,5,6],[7,8,9]]) u,s,v = np.linalg.svd(a) u
'''
matrix([[-0.21483724, 0.88723069, 0.40824829],
[-0.52058739, 0.24964395, -0.81649658],
[-0.82633754, -0.38794278, 0.40824829]])
'''
s
'''
array([1.68481034e+01, 1.06836951e+00, 4.41842475e-16])
'''
v
'''
matrix([[-0.47967118, -0.57236779, -0.66506441],
[-0.77669099, -0.07568647, 0.62531805],
[-0.40824829, 0.81649658, -0.40824829]])
''' # 验证
u * np.diag(s) * v
'''
matrix([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]])
'''

实现矩阵的转置
x.T
元素平均值
x.mean()
纵向平均值
x.mean(axis = 0)
横向平均值
x.mean(axis = 1)
所有元素之和
x.sum()
横向最大值
x.max(axis = 1)
横向最大值的索引下标
x.argmax(axis = 1)
对角线元素
x.diagonal()
非零元素下标
x.nonzero()
创建数组

np.array([1,2,3,4])
np.array((1,2,3,4))
np.array(range(4)) # 不包含终止数字
# array([0, 1, 2, 3])
# 使用 arange(初始位置=0,末尾,步长=1)
np.arange(1,8,2)
# array([1, 3, 5, 7])
生成等差数组,endpoint 为 True 则包含末尾数字
np.linspace(1,3,4,endpoint=False)
# array([1. , 1.5, 2. , 2.5])
np.linspace(1,3,4,endpoint=True)
# array([1. , 1.66666667, 2.33333333, 3. ])
创建全为零的一维数组
np.zeros(3)
创建全为一的一维数组
np.ones(4)
np.linspace(1,3,4)
# array([1. , 1.66666667, 2.33333333, 3. ])
np.logspace(起始数字,终止数字,数字个数,base = 10) 对数数组
np.logspace(1,3,4)
# 相当于 10 的 linspace(1,3,4) 次方
# array([ 10. , 46.41588834, 215.443469 , 1000. ]) np.logspace(1,3,4,base = 2)
# 2 的 linspace(1,3,4) 次方
# array([2. , 3.1748021, 5.0396842, 8. ])
创建二维数组(列表嵌套列表)
np.array([[1,2,3],[4,5,6]])
# 创建全为零的二维数组
# 两行两列
np.zeros((2,2))
三行两列
np.zeros((3,2))
# 创建一个单位数组
np.identity(3) '''
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
'''
创建一个对角矩阵,(参数为对角线上的数字)
np.diag((1,2,3)) '''
array([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
'''
第一行元素
n[0]
第一行第三列元素
n[0,2]
第一行和第二行的元素
n[[0,1]]
第一行第三列,第三行第二列,第二行第一列
n[[0,2,1],[2,1,0]]
将数组倒序
a[::-1]
步长为 2
a[::2]
从 0 到 4 的元素
a[:5]
变换 c 的矩阵行和列

c = np.arange(16)
# array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) c.shape = 4,4
'''
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
'''
第一行,第三个元素到第五个元素(如果没有则输出到末尾截止)
c[0,2:5]
第二行元素
c[1]
第三行到第六行,第三列到第六列
c[2:5,2:5]
第二行第三列元素和第三行第四列元素
c[[1,2],[2,3]]
第一行和第三行的第二列到第三列的元素
c[[0,2],1:3]
第一列和第三列的所有横行元素
c[:,[0,2]]
第三列所有元素
c[:,2]
第二行和第四行的所有元素
c[[1,3]]
第一行的第二列,第四列元素,第四行的第二列,第四列元素
c[[0,3]][:,[1,3]]
使用 * 进行相乘
x*2
使用 / 进行相除
x / 2
2 / x
使用 // 进行整除
x//2
10//x
使用 ** 进行幂运算
x**3
2 ** x
使用 + 进行相加
x + 2
使用 % 进行取模
x % 3
使用 + 进行相加
np.array([1,2,3,4]) + np.array([11,22,33,44]) np.array([1,2,3,4]) + np.array([3])
# array([4, 5, 6, 7])
数组的内积运算(对应位置上元素相乘)
np.dot(x,y)
sum(x*y)
将数组中大于 0.5 的元素显示
n[n>0.5]
找到数组中 0.05 ~ 0.4 的元素总数
sum((n > 0.05)&(n < 0.4))
是否都大于 0.2
np.all(n > 0.2)
是否有元素小于 0.1
np.any(n < 0.1)
在 a 中是否有大于 b 的元素
a > b
# array([False, True, False]) # 在 a 中是否有等于 b 的元素
a == b
# array([False, False, True]) # 显示 a 中 a 的元素等于 b 的元素
a[a == b]
# array([7])
显示 a 中的偶数且小于 5 的元素
a[(a%2 == 0) & (a < 5)]
生成一个随机数组
np.random.randint(0,6,3)
生成一个随机数组(二维数组)
np.random.randint(0,6,(3,3))
生成十个随机数在[0,1)之间
np.random.rand(10)
'''
array([0.9283789 , 0.43515554, 0.27117021, 0.94829333, 0.31733981,
0.42314939, 0.81838647, 0.39091899, 0.33571004, 0.90240897])
'''
从标准正态分布中随机抽选出3个数
np.random.standard_normal(3)
返回三页四行两列的标准正态分布数
np.random.standard_normal((3,4,2))
x = np.arange(8)
在数组尾部追加一个元素
np.append(x,10)
在数组尾部追加多个元素
np.append(x,[15,16,17])
使用 数组下标修改元素的值
x[0] = 99
在指定位置插入数据
np.insert(x,0,54)
创建一个多维数组
x = np.array([[1,2,3],[11,22,33],[111,222,333]]) 修改第 0 行第 2 列的元素值
x[0,2] = 9
行数大于等于 1 的,列数大于等于 1 的置为 1
x[1:,1:] = 1
# 同时修改多个元素值
x[1:,1:] = [7,8]
'''
array([[ 1, 2, 9],
[ 11, 7, 8],
[111, 7, 8]])
'''
x[1:,1:] = [[7,8],[9,10]]
'''
array([[ 1, 2, 9],
[ 11, 7, 8],
[111, 9, 10]])
'''
查看数组的大小
n.size
将数组分为两行五列
n.shape = 2,5
显示数组的维度
n.shape
设置数组的维度,-1 表示自动计算
n.shape = 5,-1
将新数组设置为调用数组的两行五列并返回
x = n.reshape(2,5)
x = np.arange(5)
# 将数组设置为两行,没有数的设置为 0
x.resize((2,10))
'''
array([[0, 1, 2, 3, 4, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
''' # 将 x 数组的两行五列形式显示,不改变 x 的值
np.resize(x,(2,5))
'''
array([[0, 1, 2, 3, 4],
[0, 0, 0, 0, 0]])
'''
x = np.array([1,4,5,2])
# array([1, 4, 5, 2]) # 返回排序后元素的原下标
np.argsort(x)
# array([0, 3, 1, 2], dtype=int64)
输出最大值的下标
x.argmax( )
输出最小值的下标
x.argmin( )
对数组进行排序
x.sort( )
每个数组元素对应的正弦值
np.sin(x)
每个数组元素对应的余弦值
np.cos(x)
对参数进行四舍五入
np.round(np.cos(x))
对参数进行上入整数 3.3->4
np.ceil(x/3)
# 分段函数
x = np.random.randint(0,10,size=(1,10))
# array([[0, 3, 6, 7, 9, 4, 9, 8, 1, 8]]) # 大于 4 的置为 0
np.where(x > 4,0,1)
# array([[1, 1, 0, 0, 0, 1, 0, 0, 1, 0]]) # 小于 4 的乘 2 ,大于 7 的乘3
np.piecewise(x,[x<4,x>7],[lambda x:x*2,lambda x:x*3])
# array([[ 0, 6, 0, 0, 27, 0, 27, 24, 2, 24]])

2020-06-03

  • 添加到短语集

     

    拷贝

    • 没有此单词集:英语 -> ...

       
    • 创建新的单词集...

numpy巩固的更多相关文章

  1. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  2. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  3. 利用Python进行数据分析(6) NumPy基础: 矢量计算

    矢量化指的是用数组表达式代替循环来操作数组里的每个元素. NumPy提供的通用函数(既ufunc函数)是一种对ndarray中的数据进行元素级别运算的函数. 例如,square函数计算各元素的平方,r ...

  4. python安装numpy、scipy和matplotlib等whl包的方法

    最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...

  5. 深入理解numpy

    一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相 ...

  6. Python Numpy,Pandas基础笔记

    Numpy Numpy是python的一个库.支持维度数组与矩阵计算并提供大量的数学函数库. arr = np.array([[1.2,1.3,1.4],[1.5,1.6,1.7]])#创建ndarr ...

  7. broadcasting Theano vs. Numpy

    broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...

  8. python之numpy

    一.矩阵的拼接合并 列拼接:np.column_stack() >>> import numpy as np >>> a = np.arange(9).reshap ...

  9. win7系统下python安装numpy,matplotlib,scipy和scikit-learn

    1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...

  10. 给numpy矩阵添加一列

    问题的定义: 首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3], ...

随机推荐

  1. win中mysql安装

    mysql安装: https://www.mysql.com/>官网 下载 [DOWNLOADS]----[MySQL Community Server]社区版---5.6---No thank ...

  2. Passing Reference Data Type Arguments

    public void moveCircle(Circle circle, int deltaX, int deltaY) { // code to move origin of circle to ...

  3. C++ 不定参数"..."的使用

    #include <iostream> #include <cstdio> #include <cstdarg> #define LEN_MSG_BUFFER 12 ...

  4. 【API进阶之路6】一个技术盲点,差点让整个项目翻车

    上次教了实习生一个方案之后,这小子跟运营妹子的关系是越走越近,时不时地撒把狗粮,在我司真正实现了研发运营一家亲~(上回你没看?戳上文剧情回顾:万万没想到,一个技术方案帮实习生追到了运营妹子) 这回想跟 ...

  5. Milk Pumping

    今天第一次正式打个人定位赛,还是太菜,这题连枚举加最短路都没想到,显然菜是原罪. 题面: : 题解:其实方法很多,千万别浪到网络流用dinic求最大网络流求的最小费用,这题不一样.最大流/最小费用 不 ...

  6. python爬京东(带GUI)

    最近写了个专门爬百度的,后来又想爬京东的,还是采用上次的BeautifulSoup+requests模块 下面直接上代码,看不懂的可以看这篇文章或者注释来学习 #!/usr/bin/env pytho ...

  7. java学习第二天 20207/7

    一. 1.对传参进行了了解 2. 2.java的变量命名与c/c++有些不同在java中有¥,字母,下划线和数字,同样不可以是数字开头. java的布尔型为boolean 各个数据类型的信息: 注意: ...

  8. Fetch.ai的突破使急速闪电共识成为现实

    Jonathan Ward 区块链的终结问题是由于技术限制,它已经成为区块链技术被广泛采用的障碍.用外行的话来说,终结时间可以看作是事务首次提交到网络并被确认为有效之间的等待时间.为了成功地革新我们的 ...

  9. iOS刨根问底-深入理解GCD

    概述 做过iOS开发的同学相信对于GCD(Grand Central Dispatch)并不陌生,因为在平时多线程开发过程中GCD应该是使用最多的技术甚至它要比它的上层封装NSOperation还要常 ...

  10. selenium 下拉到页面最底端

    selenium操控浏览器下拉到页面最底端: https://www.cnblogs.com/TTyb/p/7662430.html #!/usr/bin/env python # -*- codin ...