题目传送门

题意

给一个字符串s,然后将s中所有本质不同回文子串放到一个集合S里面,问S中的两个元素\(a,b\)满足\(a\)是\(b\)的子串的个数。

分析

首先要会回文树(回文自动机,一种有限状态自动机)

然后可以很轻松的求出来S集合,我们拿出一个样例画出回文树看一下

abacaba

注: 上图中结点序号只是为了方便描述,与实际建树并不一定相同

0和1分别为偶数根和奇数根,黄边为fail边,总共有7个本质不同的回文串。

在计算答案时,我们从上到下统计,例如计算aba作为母串时的答案,那么子串有\(a\),\(b\)两个,

在计算\(bacab\)时,有\(aca, a, c, b,\) 四个。不难发现,如果把黄边也加入到整个树后,变成一张图,当我们计算某一结点(具体意义为一个回文串,比如7号节点)的答案时,我们要计算它的"祖先"(具有实际意义,即代表一个回文串,例如7号结点祖先为2,3,4,6)。

为了不重复记录,有必要标记我们已经考虑过的结点(也就是计算一个答案之后(比如7)再计算它的子节点的答案时(比如8),我们要把子节点的fail所指结点(比如5)和它自己(7)算进去),而在加这些新结点进行计算时要保证他们之前没有考虑过(比如5,但是7就不需要了,7肯定在之前没有考虑过)

但是不能只对5号结点标记访问,还需要对7标记已经访问,你可以看下面这个例子

在计算7号时,我们要把7号fail所指结点加到答案中去,但是按照我们之前的计算流程可以发现,i 已经在\(ehihe\)的祖先中了,所以不能重复添加。(因为这个坑wa了一发)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 100010;
int T;
char s[N];
int n;
ll res;
namespace PAT{
const int SZ = 2e5+10;
int ch[SZ][26],fail[SZ],cnt[SZ],len[SZ],tot,last,dep[SZ];
int vis[SZ];
void init(int n){
for(int i=0;i<=n+10;i++){
fail[i] = cnt[i] = len[i] = vis[i] = dep[i] = 0;
for(int j=0;j<26;j++)ch[i][j] = 0;
}
s[0] = -1;fail[0] = 1;last = 0;
len[0] = 0;len[1] = -1,tot = 1;
dep[0] = dep[1] = 0;
}
inline int newnode(int x){
len[++tot] = x;return tot;
}
inline int getfail(int x,int n){
while(s[n-len[x]-1] != s[n])x = fail[x];
return x;
}
void create(char *s,int n){
s[0] = -1;
for(int i=1;i<=n;++i){
int t = s[i]- 'a';
int p = getfail(last,i);
if(!ch[p][t]){
int q = newnode(len[p]+2);
fail[q] = ch[getfail(fail[p],i)][t];
ch[p][t] = q;
}
++cnt[last = ch[p][t]];
}
}
int dfs(int p,ll tot){
//printf("%d %d\n",p,tot);
res += tot;
int isadd = (p!=0&&p!=1);//如果爸爸是0号和1号,没实际意义,不计入答案
vis[p] = 1;
for(int i=0;i<26;i++){
if(ch[p][i]){
int nxt = ch[p][i];
if(vis[fail[nxt]])
dfs(nxt,tot+isadd);
else{
vis[fail[nxt]] = 1;
int isaddfail = (fail[nxt]!=0 && fail[nxt] != 1);
dfs(nxt,tot+isadd+isaddfail);
vis[fail[nxt]] = 0;
}
}
}
vis[p] = 0;
}
void calc(){
dfs(0,0);
dfs(1,0);
}
}
int main(){
scanf("%d",&T);
int cas = 0;
while(T--){
scanf("%s",s+1);
n = strlen(s+1);
PAT::init(n);
PAT::create(s,n);
res = 0;
PAT::calc();
printf("Case #%d: %lld\n",++cas,res);
}
return 0;
}

2019牛客暑期多校训练营(第六场)C Palindrome Mouse (回文树+DFS)的更多相关文章

  1. 2019牛客暑期多校训练营(第六场)C - Palindrome Mouse (回文自动机)

    https://ac.nowcoder.com/acm/contest/886/C 题意: 给出一个串A , 集合S里面为A串的回文字串 , 现在在集合S里面找出多少对(a,b),b为a的字串 分析: ...

  2. 2019牛客暑期多校训练营(第六场)Palindrome Mouse 回文树+dfs

    题目传送门 题意:给出一个字符串,将字符串中所有的回文子串全部放入一个集合里,去重后.问这个集合里有几对<a,b>,使得a是b的子串. 思路:一开始想偏了,以为只要求每个回文串的回文后缀的 ...

  3. 2019牛客暑期多校训练营(第六场)J Upgrading Technology

    传送门 题意: 就是给你n个技能,每个技能最高升到m级,每升一级就是耗费Cij钱,这个Cij可能是负的,如果所有技能都升到或者说超过j等级,就会获得Dj钱,这个Dj也有可能是负值,让你求你最多得到多少 ...

  4. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  5. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  6. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  7. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  8. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  9. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  10. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

随机推荐

  1. Lesson_strange_words2

    cap 大写字母 mechanical 机械的,力学的 optical 光学的,视觉的 charge 电荷,负载 couple 耦合的,联接的,成对的 charge-coupled device 电荷 ...

  2. ICMP协议概述

    • ICMP是三层协议,和IP.ARP.ICMP同属三层    • IP协议中的6是代表上层的TCP协议,17代表UDP协议,1代表同层的ICMP协议    • ICMP协议主要用来探测       ...

  3. JVM故障处理工具,使用总结

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 用都用不到怎么学? 没有场景.没有诉求,怎么学习这些似乎用不上知识点. 其实最好的方 ...

  4. kali中安装漏洞靶场Vulhub

    一.什么是vulhub? Vulhub是一个基于docker和docker-compose的漏洞环境集合,进入对应目录并执行一条语句即可启动一个全新的漏洞环境,让漏洞复现变得更加简单,让安全研究者更加 ...

  5. python zxing包解析二维码报UnicodeDecodeError错误解决办法

    一般错误的原因是这个库不支持中文的解码(二维码内容包含中文). 修改如下: 进入zxing.__init__.py代码中,类BarCode下,parse方法中: 找到下面这两行原代码如下: 1 raw ...

  6. nodejs中使用worker_threads来创建新的线程

    目录 简介 worker_threads isMainThread MessageChannel parentPort和MessagePort markAsUntransferable SHARE_E ...

  7. JMM在X86下的原理与实现

    JMM在X86下的原理与实现 Java的happen-before模型 众所周知 Java有一个happen-before模型,可以帮助程序员隔离各个平台多线程并发的复杂性,只要Java程序员遵守ha ...

  8. IDEA安装codota插件和使用,开发人员的知心伙伴

    打开IDEA 点击左上角的File之后,如下图 成功后如图所示

  9. Angular学习资料大全和常用语法汇总(让后端程序员轻松上手)

    前言: 首先为什么要写这样的一篇文章呢?主要是因为前段时间写过一些关于Angualr的相关实战文章,有些爱学习的小伙伴对这方面比较感兴趣,但是又不知道该怎么入手(因为认识我的大多数小伙伴都是后端的同学 ...

  10. gRPC-go源码(1):连接管理

    1 写在前面 在这个系列的文章中,我们将会从源码的层面学习和理解gRPC. 整个系列的文章的计划大概是这样的:我们会先从客户端开始,沿着调用路径逐步分析到服务端,以模块为粒度进行学习,考虑这个模块是为 ...