Apache Hudi 0.7.0版本重磅发布
重点特性
1. Clustering
0.7.0版本中支持了对Hudi表数据进行Clustering(对数据按照数据特征进行聚簇,以便优化文件大小和数据布局),Clustering提供了更灵活地方式增加文件大小,有了Clustering特性,便可更快速地摄取数据,然后聚簇为更大的文件,实验数据表明查询性能可以提升34倍,文件数可以减少1020倍;另外Clustering对于查询侧优化也很明显,在查询时通常会基于字段进行Clustering,通过完全跳过一些文件来极大提升查询性能,这与云数仓Snowflake提供的Clustering功能非常类似,我们非常高兴地宣称这个特性在0.7.0版本中完全开源免费。
想要了解更多Clustering细节,可以参考RFC-19,可以查阅这些配置来在你的数据管道中启用Clustering,现在Hudi支持同步和异步的Clustering模式。
2. Metadata表
Hudi项目始于Uber,开始是基于HDFS实现的数据湖,对于云上对象存储的数据湖性能不如HDFS。在0.7.0版本,我们解决了该问题,即支持了内部Metadata表,此表可存储索引数据,其他元数据信息等。
Metadata表的实现使用了Hudi MOR表,这意味着像其他任何Hudi表一样,可以被压缩(Compaction)、清理(Clean)、增量更新(incrementally updated)。 而且与其他项目中的类似实现不同,我们选择将文件列表等信息索引为HFile格式(格式可插拔),HFile提供了很好的点查性能,可以高效获取分区文件列表等信息。
在0.7.0版本中,在写入端配置hoodie.metadata.enable=true
即可构建Metadata表,这样后续操作将不再调用fs.listStatus()
接口,我们引入了一种同步机制来保证对数据timeline中进行的文件新增/删除操作都会同步到Metadata表。
测试有25W个文件的表,Metadata表相比使用Spark并发Listing要快2~3倍,更多设计细节可查阅RFC-15,其他Metadata表相关配置可参考这里,提供了参数以便在生产环境中安全使用该特性。
3. Flink/Java客户端
Hudi最开始设计时依赖Spark,但随着项目成为Apache顶级项目,我们意识到需要抽象内部表格式、表服务、写入层的代码以支持更多的引擎。在0.7.0版本,我们完成了写入层的解耦,添加了Flink和Java客户端,现在你可以使用HoodieFlinkStreamer
来消费Kafka中的数据,以写入Hudi的COW表中。
4. 写入端优化
- Spark3支持;0.7.0版本支持使用Spark3进行写入和查询,请注意使用scala 2.12版本的hudi-spark-bundle包;
- 并行Listing;我们已将所有List操作移至
HoodieTableMetadata
接口下,该接口可以多线程/Spark并行执行,该优化可以在未开启Metadata表时提升清理、压缩性能。 - Kafka Commit Callbacks;0.7.0添加了
HoodieWriteCommitKafkaCallback
接口,当每次进行commit后可以向Kafka中发送事件,以此来触发派生/ETL数据管道,类似Apache Airflow中的Sensors - Insert Overwrite/Insert Overwrite Table;0.7.0版本中新增了这两种操作类型,主要用于批处理ETL作业,该作业通常会在每次运行时覆盖整个表/分区。考虑到这些操作可以批量替换目标表,因此这些操作比upsert更合适,请查看[示例](/docs/ quick-start-guide.html#insert-overwrite-table)。
- 删除分区支持:对于使用WriteClient/RDD级别API的用户,Hudi提供了一个新的API来删除整个分区,而不是采用记录级别删除方式。
- 新增
DefaultHoodieRecordPayload
解决乱序问题;当前默认的OverwriteWithLatestAvroPayload
将覆盖存储中已有的值,即使使用较旧值进行upsert。0.7.0版本添加了一个新的DefaultHoodieRecordPayload
和一个有效负载配置hoodie.payload.ordering.field
来指定一个字段,可以将传入的upsert记录与已存储的记录进行比较,以决定是否覆盖。推荐用户使用这种更新、更灵活的Payload模型。 - Hive同步;支持使用
SlashEncodedHourPartitionValueExtractor
同步小时分区至Hive中。 - 支持IBM云对象存储、Open Java 9版本。
5. 查询端优化
- MOR增量查询(Spark Datasource),0.7.0版本支持使用Spark datasource增量查询MOR表,在后续版本中会继续加强和重构该特性。
- Metadata表支持File Listings,用户还可以将元数据表用于以下查询端,对于Hive,设置
hoodie.metadata.enable = true
会话
属性,对于使用SparkSQL查询注册的Hive表,请使用参数--conf spark.hadoop.hoodie.metadata.enable = true
来允许从元数据中获取分区的文件列表,而非使用File Listing。
贡献者
prashantwason ,Trevor-zhang,satishkotha,nbalajee,wangxianghu,hddong,nsivabalan,xushiyan,cdmikechen,garyli1019,kwondw,sreeram26,chuangehh,zhedoubushishi,modi95,linshan-ma,Karl-WangSK,bvaradar,liujinhui1994,shenh062326,xushiyan,pratyakshsharma,afilipchik,Kaiux,lw309637554,vinothchandar,dugenkui03,leesf,yanghua,rmpifer,hj2016,guykhazma,bhasudha,hotienvu,n3nash,v3nkatesh,pengzhiwei2018,yui2010,jshmchenxi,danny0405,yui2010,lichang-bd,nbalajee,umehrot2
Apache Hudi 0.7.0版本重磅发布的更多相关文章
- Apache Hudi 0.5.1版本重磅发布
历经大约3个月时间,Apache Hudi 社区终于发布了0.5.1版本,这是Apache Hudi发布的第二个Apache版本,该版本中一些关键点如下 版本升级 将Spark版本从2.1.0升级到2 ...
- Apache Hudi 0.8.0版本重磅发布
1. 重点特性 1.1 Flink集成 自从Hudi 0.7.0版本支持Flink写入后,Hudi社区又进一步完善了Flink和Hudi的集成.包括重新设计性能更好.扩展性更好.基于Flink状态索引 ...
- Apache Hudi 0.6.0版本重磅发布
1. 下载信息 源码:Apache Hudi 0.6.0 Source Release (asc, sha512) 二进制Jar包:nexus 2. 迁移指南 如果您从0.5.3以前的版本迁移至0.6 ...
- Flutter 1.17版本重磅发布
Flutter 1.17 是2020年的第一个稳定版本,此版本包括iOS平台Metal支持(性能更快),新的Material组件,新的Network跟踪工具等等! 对所有人来说,今年是充满挑战的一年. ...
- 重磅!Vertica集成Apache Hudi指南
1. 摘要 本文演示了使用外部表集成 Vertica 和 Apache Hudi. 在演示中我们使用 Spark 上的 Apache Hudi 将数据摄取到 S3 中,并使用 Vertica 外部表访 ...
- 官宣!ASF官方正式宣布Apache Hudi成为顶级项目
马萨诸塞州韦克菲尔德(Wakefield,MA)- 2020年6月 - Apache软件基金会(ASF).350多个开源项目和全职开发人员.管理人员和孵化器宣布:Apache Hudi正式成为Apac ...
- Apache Hudi C位!云计算一哥AWS EMR 2020年度回顾
1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规 ...
- 真香!PySpark整合Apache Hudi实战
1. 准备 Hudi支持Spark-2.x版本,你可以点击如下链接安装Spark,并使用pyspark启动 # pyspark export PYSPARK_PYTHON=$(which python ...
- Apache Hudi异步Compaction方式汇总
本篇文章对执行异步Compaction的不同部署模型一探究竟. 1. Compaction 对于Merge-On-Read表,数据使用列式Parquet文件和行式Avro文件存储,更新被记录到增量文件 ...
随机推荐
- 常见数据库的JDBC URL
转自:http://blog.csdn.net/ring0hx/article/details/6152528 Microsoft SQL Server Microsoft SQL Server JD ...
- Qt学习笔记-界面设置入门
首先我们看的是qt类表.相当于是一个族谱.这个文档可以在网上搜到. 首先第一个是QObjiect. 然后是QWidget => 相当于是windowsget缩写. 同理: QColorDialo ...
- Python获取网页html代码
获取网页html代码: import requests res = requests.get('https://www.cnblogs.com/easyidea/p/10214559.html') r ...
- 数据库事务特性ACID
事务 事务(Transaction),一般是指要做的或所做的事情.在计算机术语中是指访问并可能更新数据库中各种数据项的一个程序执行单元(unit).在计算机术语中,事务通常就是指数据库事务. 概念 一 ...
- 在md里画流程图
可以使用名为mermaid的代码块,即 ```mermaid``` 需要md解析器能解析mermaid mermaid使用详情参见
- thinkphp redis实现文章点赞功能并同步入mysql
<?php namespace app\common\controller; use think\App; use think\facade\Cache; use think\facade\Db ...
- (解决)easypoi图片导出只占用一个单元格
@ 目录 前提 依赖环境 问题原因 解决方案 重写jar中的方法 原理 前提 本解决方案来源于网络,因解决自己需求,因此自行记录起来,如有侵权请联系我. 依赖环境 easypoi--依赖版本3.1.0 ...
- C语言实现蛇形矩阵
今天大一考试C语言的时候看见了这道题,下面是我转载的一个大佬的博客,自认为分析的很清楚,特来分享一下. **原文地址: https://blog.csdn.net/jack22333/article/ ...
- 【分布式锁的演化】终章!手撸ZK分布式锁!
前言 这应该是分布式锁演化的最后一个章节了,相信很多小伙伴们看完这个章节之后在应对高并发的情况下,如何保证线程安全心里肯定也会有谱了.在实际的项目中也可以参考一下老猫的github上的例子,当然代码没 ...
- 【Linux】实现端口转发的rinetd
Linux下端口转发一般都使用iptables来实现,使用iptables可以很容易将TCP和UDP端口从防火墙转发到内部主机上.但是如果需要将流量从专用地址转发到不在您当前网络上的机器上,可尝试另一 ...