【Codeforces】CF Round #592 (Div. 2) - 题解
Problem - A
Tomorrow is a difficult day for Polycarp: he has to attend \(a\) lectures and \(b\) practical classes at the university! Since Polycarp is a diligent student, he is going to attend all of them.
While preparing for the university, Polycarp wonders whether he can take enough writing implements to write all of the lectures and draw everything he has to during all of the practical classes. Polycarp writes lectures using a pen (he can't use a pencil to write lectures!); he can write down \(c\) lectures using one pen, and after that it runs out of ink. During practical classes Polycarp draws blueprints with a pencil (he can't use a pen to draw blueprints!); one pencil is enough to draw all blueprints during \(d\) practical classes, after which it is unusable.
Polycarp's pencilcase can hold no more than \(k\) writing implements, so if Polycarp wants to take \(x\) pens and \(y\) pencils, they will fit in the pencilcase if and only if \(x+y \leq k\).
Now Polycarp wants to know how many pens and pencils should he take. Help him to determine it, or tell that his pencilcase doesn't have enough room for all the implements he needs tomorrow!
Note that you don't have to minimize the number of writing implements (though their total number must not exceed \(k\)).
题意
给定 \(a,b,c,d,k\)
求一对 \(x,y\) 使 \(cx \geq a,dy \geq b\) 且 \(x+y \leq k\)。
思路
模拟即可。
代码
#include <bits/stdc++.h>
int t,a,b,c,d,k;
int main() {
for (scanf("%d",&t);t--;) {
int x = -1,y = -1;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
for (int i = 0;i <= k;i++)
for (int j = 0;i+j <= k;j++)
if (c*i >= a && d*j >= b) {
x = i,y = j;
break;
}
if (x == -1) printf("-1\n");
else printf("%d %d\n",x,y);
}
return 0;
}
Problem - B
Nikolay lives in a two-storied house. There are \(n\) rooms on each floor, arranged in a row and numbered from one from left to right. So each room can be represented by the number of the floor and the number of the room on this floor (room number is an integer between \(1\) and \(n\)).
If Nikolay is currently in some room, he can move to any of the neighbouring rooms (if they exist). Rooms with numbers \(i\) and \(i+1\) on each floor are neighbouring, for all \(1≤i≤n−1\). There may also be staircases that connect two rooms from different floors having the same numbers. If there is a staircase connecting the room \(x\) on the first floor and the room \(x\) on the second floor, then Nikolay can use it to move from one room to another.
The picture illustrates a house with \(n=4\). There is a staircase between the room \(2\) on the first floor and the room \(2\) on the second floor, and another staircase between the room \(4\) on the first floor and the room \(4\) on the second floor. The arrows denote possible directions in which Nikolay can move. The picture corresponds to the string "0101" in the input.
Nikolay wants to move through some rooms in his house. To do this, he firstly chooses any room where he starts. Then Nikolay moves between rooms according to the aforementioned rules. Nikolay never visits the same room twice (he won't enter a room where he has already been).
Calculate the maximum number of rooms Nikolay can visit during his tour, if:
·he can start in any room on any floor of his choice,
·and he won't visit the same room twice.
题意
有一个两层的房子,每层有 \(n\) 间屋子,每层的相邻两个屋子可以到达。两层之间有一些屋子有电梯相连。
问从任意屋子开始,不经过重复屋子最多能经过多少屋子。
思路
开始的房屋肯定是第 \(1\) 间或 \(n\) 间(第一层或第二层都行),然后走到最远的电梯,经过的房屋数乘 \(2\),取最大即可。
代码
#include <bits/stdc++.h>
using namespace std;
int t,n,S,T;
string s;
int main() {
for (cin >> t;t--;) {
S = -1;
cin >> n >> s;
for (size_t i = 0;i < s.size();i++)
if (s[i] == '1') {
T = i+1;
if (S == -1) S = i+1;
}
if (S == -1) printf("%d\n",n);
else printf("%d\n",max((n-S+1)*2,T*2));
}
return 0;
}
Problem - C
The football season has just ended in Berland. According to the rules of Berland football, each match is played between two teams. The result of each match is either a draw, or a victory of one of the playing teams. If a team wins the match, it gets \(w\) points, and the opposing team gets \(0\) points. If the game results in a draw, both teams get \(d\) points.
The manager of the Berland capital team wants to summarize the results of the season, but, unfortunately, all information about the results of each match is lost. The manager only knows that the team has played \(n\) games and got \(p\) points for them.
You have to determine three integers \(x, y\) and \(z\) — the number of wins, draws and loses of the team. If there are multiple answers, print any of them. If there is no suitable triple \((x,y,z)\), report about it.
题意
给定 \(n,p,w,d\),求一个三元组 \((x,y,z)\) 使 \(x⋅w+y⋅d=p\) 且 \(x+y+z=n\)。
思路
暴枚就能过,讲道理枚举到 w 就够了。
代码
#include <cstdio>
using ll = long long;
ll n,p,d,w;
int main() {
scanf("%lld%lld%lld%lld",&n,&p,&w,&d);
for (ll a = 0;a < w && d*a <= p;a++) if (!((p-d*a)%w) && (p-d*a)/w+a <= n) return printf("%lld %lld %lld",(p-d*a)/w,a,n-(p-d*a)/w-a)*0;
printf("-1");
return 0;
}
Problem - D
You are given a tree consisting of \(n\) vertices. A tree is an undirected connected acyclic graph.
You have to paint each vertex into one of three colors. For each vertex, you know the cost of painting it in every color.
You have to paint the vertices so that any path consisting of exactly three distinct vertices does not contain any vertices with equal colors. In other words, let's consider all triples \((x,y,z)\) such that \(x≠y,y≠z,x≠z\), \(x\) is connected by an edge with \(y\), and \(y\) is connected by an edge with \(z\). The colours of \(x, y\) and \(z\) should be pairwise distinct. Let's call a painting which meets this condition good.
You have to calculate the minimum cost of a good painting and find one of the optimal paintings. If there is no good painting, report about it.
题意
给定一颗 \(n\) 个点的树,要给每个点染上 \(3\) 种颜色中的任意一种,相邻三个点不能有同色。每个点染上颜色 \(1,2,3\) 的代价都不同,求代价最小的合法染色方案。
思路
不难发现,给出的树不是链答案就是 -1,否则算一算 6 种情况的答案就行了。
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
ll n,s,a[100001],b[100001],c[100001],deg[100001],p[100001],ans[100001];
vector<int> eg[100001];
ll ansx = 99999999999999999ll;
inline void dfs(int now,int fa,ll tot,ll A,ll B) {
ll to = -1;
for (size_t i = 0;i < eg[now].size();i++) if (eg[now][i] ^ fa) to = eg[now][i];
if (to == -1) {
if ((A == 1 || A == 2) && (B == 1 || B == 2)) p[now] = 3,tot += c[now];
if ((A == 3 || A == 2) && (B == 3 || B == 2)) p[now] = 1,tot += a[now];
if ((A == 1 || A == 3) && (B == 1 || B == 3)) p[now] = 2,tot += b[now];
if (tot < ansx) {
ansx = tot;
for (int i = 1;i <= n;i++) ans[i] = p[i];
}
return;
}
if (!A && !B) {
p[now] = 1,dfs(to,now,tot+a[now],1,0);
p[now] = 2,dfs(to,now,tot+b[now],2,0);
p[now] = 3,dfs(to,now,tot+c[now],3,0);
}
if (A && !B) {
if (A == 1) {
p[now] = 2,dfs(to,now,tot+b[now],A,2);
p[now] = 3,dfs(to,now,tot+c[now],A,3);
}
if (A == 2) {
p[now] = 1,dfs(to,now,tot+a[now],A,1);
p[now] = 3,dfs(to,now,tot+c[now],A,3);
}
if (A == 3) {
p[now] = 2,dfs(to,now,tot+b[now],A,2);
p[now] = 1,dfs(to,now,tot+a[now],A,1);
}
}
if (A && B) {
if ((A == 1 || A == 2) && (B == 1 || B == 2)) p[now] = 3,dfs(to,now,tot+c[now],B,3);
if ((A == 3 || A == 2) && (B == 3 || B == 2)) p[now] = 1,dfs(to,now,tot+a[now],B,1);
if ((A == 1 || A == 3) && (B == 1 || B == 3)) p[now] = 2,dfs(to,now,tot+b[now],B,2);
}
}
int main() {
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= n;i++) cin >> b[i];
for (int i = 1;i <= n;i++) cin >> c[i];
for (int i = 1,u,v;i < n;i++) {
cin >> u >> v;
eg[u].push_back(v);
eg[v].push_back(u);
deg[u]++;
deg[v]++;
}
for (int i = 1;i <= n;i++) if (deg[i] > 2) return 0*printf("-1");
for (int i = 1;i <= n;i++)
if (deg[i] == 1) s = i;
dfs(s,-1,0,0,0);
cout << ansx<<endl;
for (int i = 1;i <= n;i++) cout << ans[i] << ' ';
return 0;
}
Problem - E
You are given a sequence \(a_1,a_2,…,a_n\) consisting of \(n\) integers.
You may perform the following operation on this sequence: choose any element and either increase or decrease it by one.
Calculate the minimum possible difference between the maximum element and the minimum element in the sequence, if you can perform the aforementioned operation no more than \(k\) times.
题意
给定一个数列,可以进行 \(k\) 次操作。每一次操作你可以将数列中的一个数加一或减一,问进行小于等于 \(k\) 次操作后数列中最大值减去最小值最小为多少。
思路
这个题直接维护左右两个指针,每次答案若要 \(-1\) 必须将所有最大值减一或所有最小值加一。搞花费小的就行了。
代码
#include <algorithm>
#include <iostream>
#include <cstdio>
using namespace std;
using ll = long long;
ll ans,n,k,l,r,a[100001];
int main(){
cin >> n >> k;
for (ll i = 1;i <= n;i++) cin >> a[i];
sort(a+1,a+n+1); ans = a[n]-a[1];
for (ll l = 1,r = n,x;l < r && k;ans -= x) k -= l < n-r+1 ? (x = min(a[l+1]-a[l],k/l))*l++ : (x = min(a[r]-a[r-1],k/(n-r+1)))*(n-r--)+x;
cout << ans;
return 0;
}
咕咕咕
【Codeforces】CF Round #592 (Div. 2) - 题解的更多相关文章
- CF Round #805 (Div. 3) 题解
A 直接模拟即可,注意 \(10^k\) 的情况(罚时!罚时!罚时!). A Code using namespace std; typedef long long ll; typedef pair& ...
- Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】
Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...
- 竞赛题解 - CF Round #524 Div.2
CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...
- Codeforces Round #182 (Div. 1)题解【ABCD】
Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...
- Codeforces Round #608 (Div. 2) 题解
目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...
- Codeforces Round #525 (Div. 2)题解
Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...
- Codeforces Round #528 (Div. 2)题解
Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...
- Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F
Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...
- Codeforces Round #677 (Div. 3) 题解
Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...
随机推荐
- PyQt5模型视图委托
Model-View-Delegate 模型视图委托(MVD)是PyQt中特有的设计模式,类似MVC设计模式,将MVC设计模式中的Controller当做MVD中的Delegate,两者的概念基本相同 ...
- luoguP1036 选数 暴力AC题解
luoguP1036 选数 暴力AC题解(非正解) 俗话说得好:暴力出奇迹,打表拿省一. 对于一些暴力就能拿分的题,暴力就好啦QWQ 题目描述 输入格式 输出格式 输入输出样例 定义变量 我们令输 ...
- 第一课:Centos下配置java环境变量的两种方式(jdk1.8)
配置java环境(yum安装) 1.查出java1.8的全部版本 yum list java-1.8* 2.安装你需要的java1.8 版本(安装的名字根据查询出来的结果输入这里只是举例) yum i ...
- dos格式迭代转为unix
#!/bin/bash function recurse_convert() { local path=$ if [ "$path" == "" ];then ...
- rpm -ivh vsftpd-3.0.2-22.el7.x86_64.rpm出现error: open of vsftpd-3.0.2-22.el7.x86_64.rpm failed: No such file or directory的解决方法
情况一: 出现如图问题, 我当时的问题是通过安装rpmbuild工具软件解决的 以前制作rpm时,没有遇到过这个问题,几经搜索也没有解决.后来发现当前的centos没有安装 rpmbuild 工具软件 ...
- Nginx实现JWT验证-基于OpenResty实现
介绍 权限认证是接口开发中不可避免的问题,权限认证包括两个方面 接口需要知道调用的用户是谁 接口需要知道该用户是否有权限调用 第1个问题偏向于架构,第2个问题更偏向于业务,因此考虑在架构层解决第1个问 ...
- NACOS安装和配置
安装包nacos-server-1.1.4.tar.gz 环境 JDK1.8 上传及解压 [root@centos7- ~ ]# mkdir -p /cslc/nacos #通过SFTP将安装包上传至 ...
- Django学习路24_乘法和除法
urls 中 url(r'getnum',views.getnum) views.py 中添加对应的函数 def getnum(request): num = 5 context_num = { 'n ...
- PHP array_key_exists() 函数
实例 检查键名 "Volvo" 是否存在于数组中: <?php $a=array("Volvo"=>"XC90","B ...
- PHP sinh() 函数
实例 返回不同数的双曲正弦: <?phpecho(sinh(3) . "<br>");echo(sinh(-3) . "<br>" ...