前面提到,应用sklearn中的pipeline机制的高效性;本文重点讨论pipeline与网格搜索在机器学习实践中的结合运用:

结合管道和网格搜索以调整预处理步骤以及模型参数

一般地,sklearn中经常用到网格搜索寻找应用模型的超参数;实际上,在训练数据被送入模型之前,对数据的预处理中也会有超参数的介入,比如给数据集添加多项式特征时所指定的指数大小;

而且,一般都是将数据预处理完成后再传入估计器进行拟合,此时利用网格搜索只会单独调整估计器的超参数;如若利用pipeline结合预处理步骤和模型估计器则可以同时寻找最佳的超参数配对。

实例如下:

上图中,利用管道结合了3个处理步骤,并使用网格搜索机制针对其中两个步骤的超参数进行调优,一个是预处理阶段的PolynomialFeatures,另一个是模型Ridge

结合管道和网格搜索以选定模型

一般地,选用不同的模型会涉及到不同的预处理步骤,如采用随机森林进行分类训练时可以不对数据作预处理操作,而应用支持向量机时则需要对数据进行标准化;

下图中,利用管道结合预处理中的标准化步骤和分类模型,当模型采用随机森林时,预处理步骤置空,并利用网格搜索寻找随机森林的超参数;当模型采用支持向量机时,启用预处理步骤,并利用网格搜索寻找支持向量机的超参数。

通过此种结合应用,选定最适合的分类模型。

sklearn中的pipeline实际应用的更多相关文章

  1. sklearn中的Pipeline

    在将sklearn中的模型持久化时,使用sklearn.pipeline.Pipeline(steps, memory=None)将各个步骤串联起来可以很方便地保存模型. 例如,首先对数据进行了PCA ...

  2. sklearn 中的 Pipeline 机制 和FeatureUnion

    一.pipeline的用法 pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selec ...

  3. sklearn 中的 Pipeline 机制

    转载自:https://blog.csdn.net/lanchunhui/article/details/50521648 from sklearn.pipeline import Pipeline ...

  4. sklearn中的pipeline的创建与访问

    前期博文提到管道(pipeline)在机器学习实践中的重要性以及必要性,本文则递进一步,探讨实际操作中管道的创建与访问. 已经了解到,管道本质上是一定数量的估计器连接而成的数据处理流,所以成功创建管道 ...

  5. 【笔记】多项式回归的思想以及在sklearn中使用多项式回归和pipeline

    多项式回归以及在sklearn中使用多项式回归和pipeline 多项式回归 线性回归法有一个很大的局限性,就是假设数据背后是存在线性关系的,但是实际上,具有线性关系的数据集是相对来说比较少的,更多时 ...

  6. sklearn中的交叉验证(Cross-Validation)

    这个repo 用来记录一些python技巧.书籍.学习链接等,欢迎stargithub地址sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sk ...

  7. sklearn中的投票法

    投票法(voting)是集成学习里面针对分类问题的一种结合策略.基本思想是选择所有机器学习算法当中输出最多的那个类. 分类的机器学习算法输出有两种类型:一种是直接输出类标签,另外一种是输出类概率,使用 ...

  8. (数据科学学习手札25)sklearn中的特征选择相关功能

    一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常 ...

  9. sklearn中的多项式回归算法

    sklearn中的多项式回归算法 1.多项式回归法多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加 ...

随机推荐

  1. ModelArts 与HiLens Kit联合开发丨行人社交距离风险提示Demo

    摘要:本Demo使用YOLOv3_Resnet18模型来检测的视频流中的行人,获取行人坐标(即图中蓝色方框),然后计算所有检测到的人之间的相互"距离". 前情提要 听到行人社交距离 ...

  2. MySQL常见优化

    MySQL常见优化 1.操作符优化 1.1<> 操作符(不等于) 1.2LIKE优化 1.3in,not in,exists与not exists 1.3.1in和exists 2.whe ...

  3. Java8中流的性能

    流(Stream)是Java8为了实现最佳性能而引入的一个全新的概念.在过去的几年中,随着硬件的持续发展,编程方式已经发生了巨大的改变,程序的性能也随着并行处理.实时.云和其他一些编程方法的出现而得到 ...

  4. python模块----os模块 (操作系统接口模块)

    os模块提供一种使用与操作系统相关的功能的便捷式途径. 一定要使用 import os 而不是 from os import * .这将避免内建的 open() 函数被 os.open() 隐式替换掉 ...

  5. java.awt.event.MouseEvent鼠标事件的定义和使用 以及 Java Swing-JTextArea的使用

    最近发现一个CSDN大佬写的Java-Swing全部组件的介绍:Java Swing 图形界面开发(目录) JTextArea 文本区域.JTextArea 用来编辑多行的文本.JTextArea 除 ...

  6. 【uva 11093】Just Finish it up(算法效率--贪心)

    题意:环形跑道上有N个加油站,编号为1~N.第 i 个加油站可以加油Ai加仑,从加油站 i 开到下一站需要Bi加仑汽油.问可作为起点走完一圈后回到起点的最小加油站编号. 解法:我们把每个加油站的Ai, ...

  7. How many integers can you find HDU - 1796 容斥原理

    题意: 给你一个数n,找出来区间[1,n]内有多少书和n不互质 题解: 容斥原理 这一道题就让我真正了解容斥原理的实体部分 "容斥原理+枚举状态,碰到奇数加上(n-1)/lcm(a,b,c. ...

  8. Eclipse无法打开提示could not open jvm.cfg错误

    先言:我的问题只是出在之前我的java_jdk原来安装在F:\Temp这里,但是我之后在整理文件的时候把这个文件夹改成了F:\java_jdk.所以导致了错误的出现 解决方法1: 因为我的只是目录名称 ...

  9. Codeforces Round #540 (Div. 3) B. Tanya and Candies (后缀和)

    题意:有\(n\)个数,你可以任意去除某个位置的元素然后得到一个新数组,使得新数组奇数位和偶数的元素相等,现在问你有多少种情况合法. 题解:先求个后缀和,然后遍历,记录奇数和偶数位置的前缀和,删去\( ...

  10. DSSM在召回和粗排的应用举例

    0.写在前面的话 DSSM(Deep Structured Semantic Models)又称双塔模型,因其结构简单,在推荐系统中应用广泛:下面仅以召回.粗排两个阶段的应用举例,具体描述下DSSM在 ...