[Fundamental of Power Electronics]-PART II-9. 控制器设计-9.2 负反馈对网络传递函数的影响
9.2 负反馈对网络传递函数的影响
我们已经知道了如何推导开关变换器的交流小信号传递函数。例如,buck变换器的等效电路模型可以表示为图9.3所示。这个等效电路包含三个独立输入:控制输入变量\(\hat{d}\),输入电压变量\(\hat{v}_{g}\),以及负载电流变量\(\hat{i}_{load}\)。那么输出电压变量\(\hat{v}\)可以表示为上述三个变量的线性组合,也就是:
\]
其中:
& G_{vd}(s)=\cfrac{\hat{v}(s)}{\hat{d}(s)}|_{\hat{v}_{g}=0,\hat{i}_{load}=0} \\
& G_{vg}(s)=\cfrac{\hat{v}(s)}{\hat{v}_{g}(s)} |_{\hat{d}=0,\hat{i}_{load}=0} \\
& Z_{out}(s)=-\cfrac{\hat{v}(s)}{\hat{i}_{load}(s)} |_{\hat{d}=0,\hat{v}_{g}=0}
\end{aligned}
\]
第八章构建了这些量的bode图。式(9.1)描述了\(v_{g}\)和\(i_{load}\)的扰动是如何通过传递函数\(G_{vg}(s)\)和输出阻抗\(Z_{out}(s)\)影响输出电压\(v\)的。如果已知扰动\(v_{g}\)和\(i_{load}\)的最坏情况下的最大幅值,那么式(9.1)可以用来计算最坏情况下的\(v\)的开环变化。
Fig. 9.3 Small-signal converter model, which represents variations in \(v_g\), \(d\), and \(i_{load}\)
如前所述,图9.2的反馈环路可以用来减小\(v_{g}\)和\(i_{load}\)对输出电压\(v\)的影响。为了分析这个系统,我们对有关其静态工作点的平均信号进行扰动和线性化。功率级和控制部分均收到扰动和线性化:
& v_{ref}(t)=V_{ref}+\hat{v}_{ref}(t) \\
& v_{e}(t)=V_{e}+\hat{v}_{e}(t)\\
& etc.
\end{aligned} \tag{9.2}
\]
在直流稳压器系统中,参考输入是定值,因此\(\hat{v}_{ref}=0\)。在开关放大器或逆变器中,参考输入可能包含交流变化量。在图9.4a中,图9.3中的变换器模型与扰动和线性化及控制相结合。通过将变换器模型用式(9.1)替换,这个等效电路可以简化为图9.4b所示的框图。
Fig. 9.4 Voltage regulator system small-signal model: (a) with converter equivalent circuit; (b) complete
block diagram
图9.4b中输出电压变化量\(\hat{v}\)的解为:
\]
也可以写为以下形式:
\]
其中:
\]
式(9.4)是一个通用结果。环路增益\(T(s)\)被定义为环路的前向通道与反馈通道增益乘积。这个方程显示了添加反馈回路如何改变系统的传递函数和性能,具体的内容将在下面介绍。
9.2.1 反馈减小扰动到输出的传递函数
图9.3所示的开环buck变换器的\(v_g\)到\(v\)的传递函数\(G_{vg}(s)\)由式(9.1)给出。当反馈被添加时,根据式(9.4)传递函数变为:
\]
因此,通过反馈,该传递函数变小了\(1/(1+T(s))\)。如果环路增益\(T(s)\)的幅值较大,那么减小的幅度也会很大。因此,由给定电压\(v_{g}\)的变化量造成的输出电压变化被反馈环路给衰减了。
式(9.4)同样可以证明变换器输出阻抗被减小了, 从\(Z_{out}(s)\)到:
\]
因此,反馈环路还将变换器的输出阻抗减小了\(1/(1+T(s))\),并且减小了负载电流变化对输出电压的影响。
9.2.2 反馈使得从参考输入到输出的传递函数对环路前向通道增益变化不敏感
根据式(9.4),从\(v_{ref}\)到\(v\)的闭环传递函数为:
\]
如果环路增益的幅值非常大,也就是\(||T||>>1\),那么\((1+T) \approx T\)并且\(T/(1+T)\approx T/T=1\)。传递函数变为:
\]
其与\(G_{c}(s)\),\(V_{M}\)和\(G_{vd}(s)\)都无关。因此,假设环路增益的幅值较大,那么\(G_{c}(s)\),\(V_{M}\)和\(G_{vd}(s)\)的变化对输出电压的影响可以忽略不计。当然,在直流稳压器应用中,\(v_{ref}(t)\)是常数并且\(\hat{v}_{ref}=0\)。这里式(9.8)同样适用,于直流量。例如,如果系统是线性的,我们可以写为:
\]
因此,要使直流输出电压\(V\)准确跟随直流参考电压\(V_{ref}\),我们只需要保证直流反馈增益\(H(0)\)和参考电压\(V_{ref}\)是精确的,并且\(T(0)\)足够大。通常使用精密电阻来构造\(H\),但在\(G_{c}\),脉冲宽度调制器以及功率级无需使用具有严格控制值的器件。输出电压对前向通道中增益的灵敏度降低,而\(v\)对反馈增益\(H\)和参考输入\(v_{ref}\)的灵敏度上升。
[Fundamental of Power Electronics]-PART II-9. 控制器设计-9.2 负反馈对网络传递函数的影响的更多相关文章
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.6 环路增益的测量/9.7 本章小结
9.6 环路增益的测量 测量原型反馈系统的环路增益是一个非常好的工程实践.这种实践的目的是验证系统是否被正确地建模.如果是的,那么已经应用了良好控制器设计的系统,其特性将满足相关瞬态过冲(相角裕度), ...
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.1 引言
9.1 引言 在所有的开关变换器中,输出电压\(v(t)\)都是输入电压\(v_{g}(t)\),占空比\(d(t)\),负载电流\(i_{load}(t)\)和电路元件值的函数.在DC-DC变换器应 ...
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.5 控制器的设计
9.5 控制器设计 现在让我们来考虑如何设计控制器系统,来满足有关抑制扰动,瞬态响应以及稳定性的规范或者说设计目标.典型的直流控制器设计可以用以下规范定义: 1.负载电流变化对输出电压调节的影响.当负 ...
- [Fundamental of Power Electronics]-PART I-1.引言-1.1 功率处理概论
1.1 功率处理概论 电力电子领域关注的是利用电子设备对电力进行处理[1–7].如图1.1所示,其中关键部件就是开关变换器.通常,开关变换器包含电源输入和控制输入端口以及电源输出端口.原始输入功率按控 ...
- [Fundamental of Power Electronics]-PART II-7. 交流等效电路建模-7.3 脉冲宽度调制器建模
7.3 脉冲宽度调制器建模 我们现在已经达成了本章开始的目标,为图7.1推导了一个有效的等效电路模型.但仍存在一个细节,对脉冲宽度调制(PWM)环节进行建模.如图7.1所示的脉冲宽度调制器可以产生一个 ...
- [Fundamental of Power Electronics]-PART II-8. 变换器传递函数-8.1 Bode图回顾
8.0 序 工程设计过程主要包括以下几个过程: 1.定义规格与其他设计目标 2.提出一个电路.这是一个创造性的过程,需要利用工程师的实际见识和经验. 3.对电路进行建模.变换器的功率级建模方法已经在第 ...
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.4 稳定性
9.4 稳定性 众所周知的是,增加反馈回路可能会导致原本稳定的系统变得不稳定.尽管原变换器传递函数(式(9.1))以及环路增益\(T(s)\)不包含右半平面极点,但式(9.4)的闭环传递函数仍然可能存 ...
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.3 关键项1/(1+T)和T/(1+T)以及闭环传递函数的构建
9.3 关键项\(1/(1+T)\)和\(T/(1+T)\)以及闭环传递函数的构建 从式(9.4)到(9.9)的传递函数可以很容易的由图形代数方法进行构建.假设我们已经分析了反馈系统模块,并且已经画出 ...
- [Fundamental of Power Electronics]-PART I-1.引言-1.2 1.3 电力电子技术的几个应用、本书内容
1.2 电力电子技术的几个应用 高效开关变换器面临的功率范围从 (1)小于1瓦(电池供电的便携式设备内的DC-DC转换器)到(2)计算机及办公设备中的几十,几百,数千瓦到(3)变速电机驱动器中上千瓦及 ...
随机推荐
- SpringBoot2.x中的AOP机制总结(附带demo)
寄语:刚开始学aop的时候是大三吧,老师讲的不好,我也没学好,导致现在才有个较为清晰的认知,那个时候只知道有aop, 根部不明白aop的作用,时至今日,任然觉得aop难以咀嚼,奈何平时不用面试要用,特 ...
- Virtual DOM 简直就是挥霍
彻底澄清"Virtual DOM 飞快"的神话. 注意:原文发表于2018-12-27,随着框架不断演进,部分内容可能已不适用. 近年来,如果你有使用过 JavaScript 框架 ...
- vue监听生命周期
监听生命周期事件 内部监听声明周期函数 data() { return { monitor: null }; }, mounted() { this.monitor = setInterval(() ...
- C++类的友元机制说明
下面给出C++类的友元机制说明(对类private.protected成员访问),需要注意的是,友元机制尽量不用或者少用,虽然它会提供某种程度的效率,但会带来数据安全性的问题. 类的友元 友元是C++ ...
- js 浮点运算bug
js几个浮点运算的bug,比如6.9-1.1,7*0.8,2.1/0.3,2.2+2.1 实现思路 通过将浮点数放大倍数到整型(最后再除以相应倍数),再进行运算操作,这样就能得到正确的结果了 比如:1 ...
- 手工实现一个ThreadPoolExecutor
以下代码的实现逻辑出自于公众号 码农翻身 <你管这破玩意叫线程池?> - PS:刘欣老师在我心中是软件技术行业的大刘. 线程池接口 public interface Executor { ...
- Java I/O流 05
I/O流·文件递归 统计该文件夹的大小 * 需求:从键盘就收一个文件夹路径,统计该文件夹的大小 package com.heima.test; import java.io.File; import ...
- C#类中的字段、属性和方法
C#类中的字段.属性和方法 刚开始学C#,对于类中的字段.属性和方法很难分清,写下这份笔记,帮助理解 字段:与类相关的变量 声明方法与声明变量类似,可在前面添加访问修饰符.static关键字等: 属性 ...
- WNN48T6X 54端口国产化万兆交换机
WNN48T6X是基于盛科CTC5160设计的国产化三层万兆交换机,提供48路千兆电口和6路万兆光口,采用龙芯 2K1000处理器,支持双冗余可插拔电源供电.支持常规的L2/L3协议,支持Telnet ...
- 一文吃透zabbix4.0的编译安装,最全最详细的安装。
什么是zabbix? zabbix作为一款企业级,开源的,分布式的监控套件,解决了以往监控软件的短板,可以说是现在流行的监控解决方案之一. 监控系统的理想化模样 1.监控数据收集及可视化. 2.数据要 ...