C#LeetCode刷题之#501-二叉搜索树中的众数(Find Mode in Binary Search Tree)
问题
该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/4086 访问。
给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。
假定 BST 有如下定义:
结点左子树中所含结点的值小于等于当前结点的值
结点右子树中所含结点的值大于等于当前结点的值
左子树和右子树都是二叉搜索树
给定 BST [1,null,2,2],
1
\
2
/
2
返回[2].
提示:如果众数超过1个,不需考虑输出顺序
进阶:你可以不使用额外的空间吗?(假设由递归产生的隐式调用栈的开销不被计算在内)
Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than or equal to the node's key.
The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
Both the left and right subtrees must also be binary search trees.
Given BST [1,null,2,2],
1
\
2
/
2
return [2].
Note: If a tree has more than one mode, you can return them in any order.
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).
示例
该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/4086 访问。
public class Program {
public static void Main(string[] args) {
var root = new TreeNode(1) {
left = new TreeNode(3) {
left = new TreeNode(5),
right = new TreeNode(7)
},
right = new TreeNode(9)
};
var res = FindMode(root);
ShowArray(res);
Console.ReadKey();
}
static void ShowArray(int[] array) {
foreach(var num in array) {
Console.Write($"{num} ");
}
Console.WriteLine();
}
public static int[] FindMode(TreeNode root) {
if(root == null) return new int[0];
var dic = new Dictionary<int, int>();
PreOrder(root, ref dic);
var max = dic.Values.Max();
return (from r in dic
where r.Value == max
select r.Key).ToArray();
}
public static void PreOrder(TreeNode root, ref Dictionary<int, int> dic) {
if(root == null) return;
if(dic.ContainsKey(root.val)) {
dic[root.val]++;
} else {
dic[root.val] = 1;
}
PreOrder(root?.left, ref dic);
PreOrder(root?.right, ref dic);
}
public class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int x) { val = x; }
}
}
以上给出1种算法实现,以下是这个案例的输出结果:
该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/4086 访问。
1 3 5 7 9
分析:
显而易见,以上算法的时间复杂度为: 。
C#LeetCode刷题之#501-二叉搜索树中的众数(Find Mode in Binary Search Tree)的更多相关文章
- [Swift]LeetCode501. 二叉搜索树中的众数 | Find Mode in Binary Search Tree
Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred ...
- Java实现 LeetCode 501 二叉搜索树中的众数
501. 二叉搜索树中的众数 给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素). 假定 BST 有如下定义: 结点左子树中所含结点的值小于等于当前结点的值 结点 ...
- Leetcode:1305. 两棵二叉搜索树中的所有元素
Leetcode:1305. 两棵二叉搜索树中的所有元素 Leetcode:1305. 两棵二叉搜索树中的所有元素 思路 BST树中序历遍有序. 利用双指针法可以在\(O(n)\)的复杂度内完成排序. ...
- [LeetCode] Inorder Successor in BST 二叉搜索树中的中序后继节点
Given a binary search tree and a node in it, find the in-order successor of that node in the BST. No ...
- Leetcode501.Find Mode in Binary Search Tree二叉搜索树中的众数
给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素). 假定 BST 有如下定义: 结点左子树中所含结点的值小于等于当前结点的值 结点右子树中所含结点的值大于等于当 ...
- 【LeetCode 235_二叉搜索树】Lowest Common Ancestor of a Binary Search Tree
解法一:递归 TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (root == NULL | ...
- LeetCode501.二叉搜索树中的众数
题目,本题未做出,还有很多要学习 class Solution { public: vector<int>ans; int base,count,maxCount; void update ...
- 刷题-力扣-230. 二叉搜索树中第K小的元素
230. 二叉搜索树中第K小的元素 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/kth-smallest-element-in-a ...
- [LeetCode] Delete Node in a BST 删除二叉搜索树中的节点
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Retur ...
- [LeetCode] Insert into a Binary Search Tree 二叉搜索树中插入结点
Given the root node of a binary search tree (BST) and a value to be inserted into the tree, insert t ...
随机推荐
- day8 python 列表,元组,集合,字典的操作及方法 和 深浅拷贝
2.2 list的方法 # 增 list.append() # 追加 list.insert() # 指定索引前增加 list.extend() # 迭代追加(可迭代对象,打散追加) # 删 list ...
- Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines 论文研读
摘要 本文提出了一种用于训练支持向量机的新算法:序列最小优化算法(SMO).训练支持向量机需要解决非常大的二 次规划(QP)优化问题.SMO 将这个大的 QP 问题分解为一系列最小的 QP 问题.这些 ...
- Burp Suite Proxy Module - 代理模块
官方参考链接:https://portswigger.net/burp/documentation/desktop/tools/proxy/using 1.Burp Suite 代理设置选项 2.浏览 ...
- 树形dp 之 小胖守皇宫
题目描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:有边相连的宫殿间可以互相望见.大内保卫森严,三步一岗,五步一 ...
- VMware虚拟机网络配置详解
VMware网络配置:三种网络模式简介 安装好虚拟机以后,在网络连接里面可以看到多了两块网卡: 其中VMnet1是虚拟机Host-only模式的网络接口,VMnet8是NAT模式的网络接口,这些后面会 ...
- mysql 5.7.13 安装配置方法
linux环境Mysql 5.7.13安装教程分享给大家,供大家参考,具体内容如下: 1系统约定 安装文件下载目录:/data/software Mysql目录安装位置:/usr/local/mysq ...
- 搭建mysql NDB集群
NDB群集安装 介绍 https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-basics.html NDBCLUSTER (也称为NDB)是一种内 ...
- jsp课堂笔记2
jsp页面的基本结构 jsp标记 普通html标记 变量和方法的声明 java程序片 java表达式 变量和方法的声明 <%! %> 标记符号之间声明变量和方法 成员变量即全局变 ...
- oracle 误删除 恢复
select * from LFS_WELFAxxxxxASTDAYS AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '100' MINUTE) order by ...
- scrapy中选择器用法
一.Selector选择器介绍 python从网页中提取数据常用以下两种方法: lxml:基于ElementTree的XML解析库(也可以解析HTML),不是python的标准库 BeautifulS ...